|
import os |
|
import datasets |
|
from huggingface_hub import HfApi |
|
from datasets import DownloadManager, DatasetInfo |
|
from datasets.data_files import DataFilesDict |
|
|
|
_EXTENSION = [".png", ".jpg", ".jpeg"] |
|
_NAME = "animelover/danbooru2022" |
|
_REVISION = "main" |
|
|
|
|
|
class DanbooruDataset(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
|
|
datasets.BuilderConfig( |
|
name="0sfw", |
|
description="sfw subset", |
|
), |
|
datasets.BuilderConfig( |
|
name="1full", |
|
description="full dataset", |
|
), |
|
] |
|
|
|
def _info(self) -> DatasetInfo: |
|
return datasets.DatasetInfo( |
|
description=self.config.description, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"tags": datasets.Value("string"), |
|
"post_id": datasets.Value("int64"), |
|
} |
|
), |
|
supervised_keys=None, |
|
citation="", |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager): |
|
hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0) |
|
data_files = DataFilesDict.from_hf_repo( |
|
{datasets.Split.TRAIN: ["**"]}, |
|
dataset_info=hfh_dataset_info, |
|
allowed_extensions=["zip"], |
|
) |
|
gs = [] |
|
for split, files in data_files.items(): |
|
downloaded_files = dl_manager.download_and_extract(files) |
|
gs.append(datasets.SplitGenerator(name=split, gen_kwargs={"filepath": downloaded_files})) |
|
return gs |
|
|
|
def _generate_examples(self, filepath): |
|
for path in filepath: |
|
all_fnames = {os.path.relpath(os.path.join(root, fname), start=path) |
|
for root, _dirs, files in os.walk(path) for fname in files} |
|
image_fnames = sorted([fname for fname in all_fnames if os.path.splitext(fname)[1].lower() in _EXTENSION], |
|
reverse=True) |
|
for image_fname in image_fnames: |
|
image_path = os.path.join(path, image_fname) |
|
tags_path = os.path.join(path, os.path.splitext(image_fname)[0] + ".txt") |
|
with open(tags_path, "r", encoding="utf-8") as f: |
|
tags = f.read() |
|
if self.config.name == "0sfw" and any(tag.strip() in nsfw_tags for tag in tags.split(",")): |
|
continue |
|
post_id = int(os.path.splitext(os.path.basename(image_fname))[0]) |
|
yield image_fname, {"image": image_path, "tags": tags, "post_id": post_id} |
|
|
|
|
|
nsfw_tags = ["nude", "sex", "nipples", "pussy", "vaginal", "pubic_hair", "anus", "penis", "cum", "condom", "sex toy"] |
|
|