|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""MKQA: Multilingual Knowledge Questions & Answers""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{mkqa, |
|
title = {MKQA: A Linguistically Diverse Benchmark for Multilingual Open Domain Question Answering}, |
|
author = {Shayne Longpre and Yi Lu and Joachim Daiber}, |
|
year = {2020}, |
|
URL = {https://arxiv.org/pdf/2007.15207.pdf} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
We introduce MKQA, an open-domain question answering evaluation set comprising 10k question-answer pairs sampled from the Google Natural Questions dataset, aligned across 26 typologically diverse languages (260k question-answer pairs in total). For each query we collected new passage-independent answers. These queries and answers were then human translated into 25 Non-English languages. |
|
""" |
|
_HOMEPAGE = "https://github.com/apple/ml-mkqa" |
|
_LICENSE = "CC BY-SA 3.0" |
|
|
|
|
|
_URLS = {"train": "https://github.com/apple/ml-mkqa/raw/main/dataset/mkqa.jsonl.gz"} |
|
|
|
|
|
class Mkqa(datasets.GeneratorBasedBuilder): |
|
"""MKQA dataset""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="mkqa", |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
] |
|
|
|
def _info(self): |
|
langs = [ |
|
"ar", |
|
"da", |
|
"de", |
|
"en", |
|
"es", |
|
"fi", |
|
"fr", |
|
"he", |
|
"hu", |
|
"it", |
|
"ja", |
|
"ko", |
|
"km", |
|
"ms", |
|
"nl", |
|
"no", |
|
"pl", |
|
"pt", |
|
"ru", |
|
"sv", |
|
"th", |
|
"tr", |
|
"vi", |
|
"zh_cn", |
|
"zh_hk", |
|
"zh_tw", |
|
] |
|
|
|
|
|
queries_features = {lan: datasets.Value("string") for lan in langs} |
|
answer_feature = [ |
|
{ |
|
"type": datasets.ClassLabel( |
|
names=[ |
|
"entity", |
|
"long_answer", |
|
"unanswerable", |
|
"date", |
|
"number", |
|
"number_with_unit", |
|
"short_phrase", |
|
"binary", |
|
] |
|
), |
|
"entity": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"aliases": [datasets.Value("string")], |
|
} |
|
] |
|
answer_features = {lan: answer_feature for lan in langs} |
|
|
|
features = datasets.Features( |
|
{ |
|
"example_id": datasets.Value("string"), |
|
"queries": queries_features, |
|
"query": datasets.Value("string"), |
|
"answers": answer_features, |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
urls_to_download = _URLS |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]})] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
for row in f: |
|
data = json.loads(row) |
|
data["example_id"] = str(data["example_id"]) |
|
id_ = data["example_id"] |
|
for language in data["answers"].keys(): |
|
|
|
for a in data["answers"][language]: |
|
if "aliases" not in a: |
|
a["aliases"] = [] |
|
if "entity" not in a: |
|
a["entity"] = "" |
|
|
|
yield id_, data |
|
|