File size: 4,587 Bytes
8a96fcc
6469682
 
 
 
8a96fcc
6469682
 
 
 
759f08b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
language:
- en
license:
- mit
---

# ADT Dataset

## Dataset Description
This dataset contains Aria Digital Twin (ADT) sequences with various sensor data and annotations, including 2D/3D bounding boxes, trajectories, eye gaze data, and VRS recordings.

## Quick Start
```python
from adt_dataset_loader import ADTDatasetLoader

# Load entire dataset
loader = ADTDatasetLoader("ariakang/ADT-test")

# Load specific sequence
loader = ADTDatasetLoader("ariakang/ADT-test", sequence_name="Apartment_release_clean_seq131_M1292")
```

## Installation
```bash
# Install required packages
pip install datasets pandas
```

## Dataset Structure
Each sequence contains:
- VRS Files:
  - video.vrs
  - synthetic_video.vrs
  - segmentations.vrs
  - depth_images.vrs
- CSV Data:
  - 2D/3D bounding boxes
  - Aria device trajectories
  - Eye gaze data
  - Scene objects
- JSON Data:
  - Instance annotations
  - Metadata
- MPS Data:
  - Eye gaze processing
  - SLAM results

## Flexible Loading Options

### 1. Load Entire Dataset
```python
# Initialize loader with all sequences
loader = ADTDatasetLoader("ariakang/ADT-test")

# See available sequences and data types
available_files = loader.get_available_files()
print("Available files:", available_files)

# Load all data types
bbox_2d = loader.load_2d_bounding_boxes()
bbox_3d = loader.load_3d_bounding_boxes()
trajectory = loader.load_aria_trajectory()
eyegaze = loader.load_eyegaze()
metadata = loader.load_metadata()
slam_data = loader.load_mps_slam()
```

### 2. Load Specific Sequences
```python
# Load a specific sequence
loader = ADTDatasetLoader(
    "ariakang/ADT-test",
    sequence_name="Apartment_release_clean_seq131_M1292"
)

# Load data from this sequence
bbox_2d = loader.load_2d_bounding_boxes()
trajectory = loader.load_aria_trajectory()
```

### 3. Load Selected Data Types
```python
# Initialize loader for specific sequence
loader = ADTDatasetLoader("ariakang/ADT-test", "Apartment_release_clean_seq131_M1292")

# Load only 2D bounding boxes and VRS info
bbox_2d = loader.load_2d_bounding_boxes()
vrs_info = loader.get_vrs_files_info()

# Get paths to specific VRS files
video_vrs = [f for f in vrs_info if f['filename'] == 'video.vrs'][0]
print(f"Video VRS path: {video_vrs['path']}")

# Load only SLAM data
slam_data = loader.load_mps_slam()
closed_loop = slam_data['closed_loop']  # Get specific SLAM component
```

## Available Data Types and Methods

### Main Data Types
```python
# Bounding Boxes and Trajectories
bbox_2d = loader.load_2d_bounding_boxes()
bbox_3d = loader.load_3d_bounding_boxes()
trajectory = loader.load_aria_trajectory()

# Eye Gaze and Scene Data
eyegaze = loader.load_eyegaze()
scene_objects = loader.load_scene_objects()

# Metadata and Instances
metadata = loader.load_metadata()
instances = loader.load_instances()

# MPS Data
eye_gaze_data = loader.load_mps_eye_gaze()  # Returns dict with 'general' and 'summary'
slam_data = loader.load_mps_slam()  # Returns dict with various SLAM components
```

### VRS Files
```python
# Get VRS file information
vrs_info = loader.get_vrs_files_info()

# Example: Access specific VRS file info
for vrs_file in vrs_info:
    print(f"File: {vrs_file['filename']}")
    print(f"Path: {vrs_file['path']}")
    print(f"Size: {vrs_file['size_bytes'] / 1024 / 1024:.2f} MB")
```

### Custom Loading
```python
# Load any file by name
data = loader.load_file_by_name("your_file_name.csv")
```

## Data Format Examples

### 2D Bounding Boxes
```python
bbox_2d = loader.load_2d_bounding_boxes()
print(bbox_2d.columns)
# Columns: ['object_uid', 'timestamp[ns]', 'x_min[pixel]', 'x_max[pixel]', 'y_min[pixel]', 'y_max[pixel]']
```

### Aria Trajectory
```python
trajectory = loader.load_aria_trajectory()
print(trajectory.columns)
# Columns: ['timestamp[ns]', 'x', 'y', 'z', 'qx', 'qy', 'qz', 'qw']
```

### MPS SLAM Data
```python
slam_data = loader.load_mps_slam()
# Components:
# - closed_loop: DataFrame with closed-loop trajectory
# - open_loop: DataFrame with open-loop trajectory
# - calibration: Calibration parameters
```

## Error Handling
```python
try:
    data = loader.load_file_by_name("non_existent_file.csv")
except ValueError as e:
    print(f"Error: {e}")
```

## Notes
- All CSV files are loaded as pandas DataFrames
- JSON/JSONL files are loaded as Python dictionaries/lists
- VRS files are not loaded into memory, only their metadata and paths are provided
- Use `get_available_files()` to see all available data in your sequence

## Repository Structure
VRS files are stored in sequence-specific folders:
`sequences/{sequence_name}/vrs_files/`