|
import io |
|
import json |
|
from pathlib import Path |
|
from typing import Any, Dict, List, Union |
|
|
|
import pandas as pd |
|
from datasets import load_dataset |
|
|
|
|
|
class ADTDatasetLoader: |
|
"""Loader for ADT Dataset from Hugging Face.""" |
|
|
|
def __init__(self, repo_id: str = "ariakang/ADT-test", sequence_name: str = None): |
|
""" |
|
Initialize the dataset loader. |
|
|
|
Args: |
|
repo_id: Hugging Face repository ID |
|
sequence_name: Specific sequence to load. If None, loads first available sequence |
|
""" |
|
self.dataset = load_dataset(repo_id) |
|
|
|
if sequence_name is None: |
|
sequence_name = list(self.dataset.keys())[0] |
|
|
|
self.sequence_name = sequence_name |
|
self.sequence = self.dataset[sequence_name] |
|
|
|
|
|
self.file_index = { |
|
filename: idx for idx, filename in enumerate(self.sequence["filename"]) |
|
} |
|
|
|
def _deserialize_csv(self, csv_string: str) -> pd.DataFrame: |
|
"""Convert CSV string to DataFrame.""" |
|
return pd.read_csv(io.StringIO(csv_string)) |
|
|
|
def _deserialize_json(self, json_string: str) -> Union[Dict, List]: |
|
"""Convert JSON string to Python object.""" |
|
return json.loads(json_string) |
|
|
|
def get_available_files(self) -> List[Dict[str, str]]: |
|
"""Get list of all available files and their types.""" |
|
return [ |
|
{"filename": filename, "type": dtype} |
|
for filename, dtype in zip( |
|
self.sequence["filename"], self.sequence["data_type"] |
|
) |
|
] |
|
|
|
def load_file_by_name(self, filename: str) -> Any: |
|
""" |
|
Load specific file by name. |
|
|
|
Args: |
|
filename: Name of the file to load (e.g., "2d_bounding_box.csv") |
|
|
|
Returns: |
|
DataFrame for CSV files, dict/list for JSON files |
|
""" |
|
if filename not in self.file_index: |
|
raise ValueError(f"File {filename} not found in dataset") |
|
|
|
idx = self.file_index[filename] |
|
data_type = self.sequence["data_type"][idx] |
|
data = self.sequence["data"][idx] |
|
|
|
if data_type == "csv": |
|
return self._deserialize_csv(data) |
|
elif data_type in ["json", "jsonl"]: |
|
return self._deserialize_json(data) |
|
else: |
|
return data |
|
|
|
def load_2d_bounding_boxes(self) -> pd.DataFrame: |
|
"""Load 2D bounding box data.""" |
|
return self.load_file_by_name("2d_bounding_box.csv") |
|
|
|
def load_3d_bounding_boxes(self) -> pd.DataFrame: |
|
"""Load 3D bounding box data.""" |
|
return self.load_file_by_name("3d_bounding_box.csv") |
|
|
|
def load_aria_trajectory(self) -> pd.DataFrame: |
|
"""Load Aria device trajectory data.""" |
|
return self.load_file_by_name("aria_trajectory.csv") |
|
|
|
def load_eyegaze(self) -> pd.DataFrame: |
|
"""Load eye gaze data.""" |
|
return self.load_file_by_name("eyegaze.csv") |
|
|
|
def load_scene_objects(self) -> pd.DataFrame: |
|
"""Load scene objects data.""" |
|
return self.load_file_by_name("scene_objects.csv") |
|
|
|
def load_instances(self) -> Dict: |
|
"""Load instances data.""" |
|
return self.load_file_by_name("instances.json") |
|
|
|
def load_metadata(self) -> Dict: |
|
"""Load metadata.""" |
|
return self.load_file_by_name("metadata.json") |
|
|
|
def load_mps_eye_gaze(self) -> Dict[str, Union[pd.DataFrame, Dict]]: |
|
"""Load MPS eye gaze data.""" |
|
return { |
|
"general": self.load_file_by_name("mps/eye_gaze/general_eye_gaze.csv"), |
|
"summary": self.load_file_by_name("mps/eye_gaze/summary.json"), |
|
} |
|
|
|
def load_mps_slam(self) -> Dict[str, Union[pd.DataFrame, List]]: |
|
"""Load MPS SLAM data.""" |
|
return { |
|
"closed_loop": self.load_file_by_name( |
|
"mps/slam/closed_loop_trajectory.csv" |
|
), |
|
"open_loop": self.load_file_by_name("mps/slam/open_loop_trajectory.csv"), |
|
"calibration": self.load_file_by_name("mps/slam/online_calibration.jsonl"), |
|
} |
|
|
|
def get_vrs_files_info(self) -> List[Dict]: |
|
"""Get information about VRS files.""" |
|
vrs_info = self.load_file_by_name("vrs_files_info.json") |
|
return self._deserialize_json(vrs_info) |
|
|
|
|
|
def print_dataset_summary(data: Any, name: str): |
|
"""Print summary of loaded data.""" |
|
if isinstance(data, pd.DataFrame): |
|
print(f"\n{name}:") |
|
print(f"Shape: {data.shape}") |
|
print("Columns:", list(data.columns)) |
|
print("Sample data:") |
|
print(data.head(2)) |
|
elif isinstance(data, dict): |
|
print(f"\n{name}:") |
|
print("Keys:", list(data.keys())) |
|
elif isinstance(data, list): |
|
print(f"\n{name}:") |
|
print(f"Number of items: {len(data)}") |
|
if data: |
|
print("First item sample:", data[0]) |
|
|
|
|
|
def main(): |
|
"""Example usage of the dataset loader.""" |
|
loader = ADTDatasetLoader() |
|
|
|
print(f"Loading sequence: {loader.sequence_name}") |
|
|
|
|
|
print("\nAvailable files:") |
|
for file_info in loader.get_available_files(): |
|
print(f"- {file_info['filename']} ({file_info['type']})") |
|
|
|
|
|
print("\n=== Loading all data types ===") |
|
|
|
|
|
print_dataset_summary(loader.load_2d_bounding_boxes(), "2D Bounding Boxes") |
|
print_dataset_summary(loader.load_3d_bounding_boxes(), "3D Bounding Boxes") |
|
|
|
|
|
print_dataset_summary(loader.load_aria_trajectory(), "Aria Trajectory") |
|
print_dataset_summary(loader.load_eyegaze(), "Eye Gaze") |
|
|
|
|
|
print_dataset_summary(loader.load_scene_objects(), "Scene Objects") |
|
|
|
|
|
print_dataset_summary(loader.load_instances(), "Instances") |
|
print_dataset_summary(loader.load_metadata(), "Metadata") |
|
|
|
|
|
print_dataset_summary(loader.load_mps_eye_gaze(), "MPS Eye Gaze") |
|
print_dataset_summary(loader.load_mps_slam(), "MPS SLAM") |
|
|
|
|
|
print_dataset_summary(loader.get_vrs_files_info(), "VRS Files") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|