File size: 9,685 Bytes
26bb2ed 5bd6442 26bb2ed 5bd6442 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
---
# Example metadata to be added to a dataset card.
# Full dataset card template at https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md
language:
- en
license: mit # Example: apache-2.0 or any license from https://hf.co/docs/hub/repositories-licenses
tags:
- robotics
- manipulation
- rearrangement
- computer-vision
- reinforcement-learning
- imitation-learning
- rgbd
- rgb
- depth
- low-level-control
- whole-body-control
- home-assistant
- simulation
- maniskill
annotations_creators:
- machine-generated # Generated from RL policies with filtering
language_creators:
- machine-generated
language_details: en-US
pretty_name: ManiSkill-HAB SetTabkle Dataset
size_categories:
- 1M<n<10M # Dataset has 8K episodes with 1.6M transitions
# source_datasets: # None, original
task_categories:
- robotics
- reinforcement-learning
task_ids:
- grasping
- task-planning
configs:
- config_name: pick-013_apple
data_files:
- split: trajectories
path: pick/013_apple.h5
- split: metadata
path: pick/013_apple.json
- config_name: pick-024_bowl
data_files:
- split: trajectories
path: pick/024_bowl.h5
- split: metadata
path: pick/024_bowl.json
- config_name: place-013_apple
data_files:
- split: trajectories
path: place/013_apple.h5
- split: metadata
path: place/013_apple.json
- config_name: place-024_bowl
data_files:
- split: trajectories
path: place/024_bowl.h5
- split: metadata
path: place/024_bowl.json
- config_name: open-fridge
data_files:
- split: trajectories
path: open/fridge.h5
- split: metadata
path: open/fridge.json
- config_name: open-kitchen_counter
data_files:
- split: trajectories
path: open/kitchen_counter.h5
- split: metadata
path: open/kitchen_counter.json
- config_name: close-fridge
data_files:
- split: trajectories
path: close/fridge.h5
- split: metadata
path: close/fridge.json
- config_name: close-kitchen_counter
data_files:
- split: trajectories
path: close/kitchen_counter.h5
- split: metadata
path: close/kitchen_counter.json
# # Optional. This part can be used to store the feature types and size of the dataset to be used in python. This can be automatically generated using the datasets-cli.
# dataset_info:
# features:
# - name: {feature_name_0} # Example: id
# dtype: {feature_dtype_0} # Example: int32
# - name: {feature_name_1} # Example: text
# dtype: {feature_dtype_1} # Example: string
# - name: {feature_name_2} # Example: image
# dtype: {feature_dtype_2} # Example: image
# # Example for SQuAD:
# # - name: id
# # dtype: string
# # - name: title
# # dtype: string
# # - name: context
# # dtype: string
# # - name: question
# # dtype: string
# # - name: answers
# # sequence:
# # - name: text
# # dtype: string
# # - name: answer_start
# # dtype: int32
# config_name: {config_name} # Name of the dataset subset. Example for glue: sst2
# splits:
# - name: {split_name_0} # Example: train
# num_bytes: {split_num_bytes_0} # Example for SQuAD: 79317110
# num_examples: {split_num_examples_0} # Example for SQuAD: 87599
# download_size: {dataset_download_size} # Example for SQuAD: 35142551
# dataset_size: {dataset_size} # Example for SQuAD: 89789763
# It can also be a list of multiple subsets (also called "configurations"):
# ```yaml
# dataset_info:
# - config_name: {config0}
# features:
# ...
# - config_name: {config1}
# features:
# ...
# ```
# # Optional. If you want your dataset to be protected behind a gate that users have to accept to access the dataset. More info at https://huggingface.co/docs/hub/datasets-gated
# extra_gated_fields:
# - {field_name_0}: {field_type_0} # Example: Name: text
# - {field_name_1}: {field_type_1} # Example: Affiliation: text
# - {field_name_2}: {field_type_2} # Example: Email: text
# - {field_name_3}: {field_type_3} # Example for speech datasets: I agree to not attempt to determine the identity of speakers in this dataset: checkbox
# extra_gated_prompt: {extra_gated_prompt} # Example for speech datasets: By clicking on “Access repository” below, you also agree to not attempt to determine the identity of speakers in the dataset.
# # Optional. Add this if you want to encode a train and evaluation info in a structured way for AutoTrain or Evaluation on the Hub
# train-eval-index:
# - config: {config_name} # The dataset subset name to use. Example for datasets without subsets: default. Example for glue: sst2
# task: {task_name} # The task category name (same as task_category). Example: question-answering
# task_id: {task_type} # The AutoTrain task id. Example: extractive_question_answering
# splits:
# train_split: train # The split to use for training. Example: train
# eval_split: validation # The split to use for evaluation. Example: test
# col_mapping: # The columns mapping needed to configure the task_id.
# # Example for extractive_question_answering:
# # question: question
# # context: context
# # answers:
# # text: text
# # answer_start: answer_start
# metrics:
# - type: {metric_type} # The metric id. Example: wer. Use metric id from https://hf.co/metrics
# name: {metric_name} # Tne metric name to be displayed. Example: Test WER
---
# ManiSkill-HAB SetTable Dataset
**[Paper](https://arxiv.org/abs/2412.13211)**
| **[Website](https://arth-shukla.github.io/mshab)**
| **[Code](https://github.com/arth-shukla/mshab)**
| **[Models](https://huggingface.co/arth-shukla/mshab_checkpoints)**
| **[(Full) Dataset](https://arth-shukla.github.io/mshab/#dataset-section)**
| **[Supplementary](https://sites.google.com/view/maniskill-hab)**
<!-- Provide a quick summary of the dataset. -->
Whole-body, low-level control/manipulation demonstration dataset for ManiSkill-HAB SetTable.
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
Demonstration dataset for ManiSkill-HAB SetTable. Each subtask/object combination (e.g pick 013_apple) has 1000 successful episodes (200 samples/demonstration) gathered using [RL policies](https://huggingface.co/arth-shukla/mshab_checkpoints) fitered for safe robot behavior with a rule-based event labeling system.
SetTable contains the Pick, Place, Open, and Close subtasks. Relative to the other MS-HAB long-horizon tasks (TidyHouse, PrepareGroceries), SetTable Pick, Place, Open, and Close are easy difficulty (on a scale of easy-medium-hard). The difficulty of SetTable primarily comes from skill chaining rather than individual subtasks.
### Related Datasets
Full information about the MS-HAB datasets (size, difficulty, links, etc), including the other long horizon tasks, are available [on the ManiSkill-HAB website](https://arth-shukla.github.io/mshab/#dataset-section).
- [ManiSkill-HAB TidyHouse Dataset](https://huggingface.co/datasets/arth-shukla/MS-HAB-TidyHouse)
- [ManiSkill-HAB PrepareGroceries Dataset](https://huggingface.co/datasets/arth-shukla/MS-HAB-PrepareGroceries)
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
This dataset can be used to train vision-based learning from demonstrations and imitation learning methods, which can be evaluated with the [MS-HAB environments](https://github.com/arth-shukla/mshab). This dataset may be useful as synthetic data for computer vision tasks as well.
### Out-of-Scope Use
While blind state-based policies can be trained on this dataset, it is recommended to train vision-based policies to handle collisions and obstructions.
## Dataset Structure
Each subtask/object combination has files `[SUBTASK]/[OBJECT].json` and `[SUBTASK]/[OBJECT].h5`. The JSON file contains episode metadata, event labels, etc, while the HDF5 file contains the demonstration data.
## Dataset Creation
<!-- TODO (arth): link paper appendix, maybe html, for the event labeling system -->
The data is gathered using [RL policies](https://huggingface.co/arth-shukla/mshab_checkpoints) fitered for safe robot behavior with a rule-based event labeling system.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
The dataset is purely synthetic.
While MS-HAB supports high-quality ray-traced rendering, this dataset uses ManiSkill's default rendering for data generation due to efficiency. However, users can generate their own data with the [data generation code](https://github.com/arth-shukla/mshab/blob/main/mshab/utils/gen/gen_data.py).
<!-- TODO (arth): citation -->
## Citation
```
@article{shukla2024maniskillhab,
author = {Arth Shukla and Stone Tao and Hao Su},
title = {ManiSkill-HAB: A Benchmark for Low-Level Manipulation in Home Rearrangement Tasks},
journal = {CoRR},
volume = {abs/2412.13211},
year = {2024},
url = {https://doi.org/10.48550/arXiv.2412.13211},
doi = {10.48550/ARXIV.2412.13211},
eprinttype = {arXiv},
eprint = {2412.13211},
timestamp = {Mon, 09 Dec 2024 01:29:24 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2412-13211.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|