BounharAbdelaziz
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -21,3 +21,49 @@ configs:
|
|
21 |
- split: train
|
22 |
path: data/train-*
|
23 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
- split: train
|
22 |
path: data/train-*
|
23 |
---
|
24 |
+
# Moroccan Darija Dataset (Filtered from FineWeb2)
|
25 |
+
|
26 |
+
This dataset contains Moroccan Darija samples extracted from the [FineWeb2](https://huggingface.co/datasets/Omartificial-Intelligence-Space/FineWeb2-Moroccan-Arabic) dataset.
|
27 |
+
The extraction was performed using a [custom model](https://huggingface.co/atlasia/SfaIA-Arabic-Dialect-Identifier/tree/main/) trained to classify Arabic dialects, including Moroccan Darija (here we used the version `model_binary_v3_1fpr.bin`).
|
28 |
+
Here, we kept samples with a high confidence score (above 0.6) for Moroccan Darija.
|
29 |
+
This dataset aims to advance research and development in Moroccan Darija NLP tasks.
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
## Dataset Description
|
34 |
+
|
35 |
+
Moroccan Darija, a widely spoken Arabic dialect in Morocco, is underrepresented in NLP resources. This dataset fills that gap by filtering FineWeb2 using an advanced classifier designed to accurately identify Moroccan Darija text. The resulting dataset is a valuable resource for tasks such as:
|
36 |
+
- Language modeling
|
37 |
+
- Sentiment analysis
|
38 |
+
- Machine translation
|
39 |
+
- Dialectal classification
|
40 |
+
|
41 |
+
---
|
42 |
+
|
43 |
+
## Extraction Methodology
|
44 |
+
|
45 |
+
1. **Base Dataset**: FineWeb2, a large-scale multilingual web dataset.
|
46 |
+
1. **First extraction using GlotLID**: [A version](https://huggingface.co/datasets/Omartificial-Intelligence-Space/FineWeb2-Moroccan-Arabic) with extraction using GlotLID.
|
47 |
+
2. **SfaIA Model**: A fasttext model trained to identify Arabic dialects, including Moroccan Darija with better performances than GlotLID.
|
48 |
+
3. **Pipeline**:
|
49 |
+
- Text samples from the [dataset](https://huggingface.co/datasets/Omartificial-Intelligence-Space/FineWeb2-Moroccan-Arabic) were passed through the SfaIA classifier.
|
50 |
+
- Only samples with a high confidence score (above 0.6) for Moroccan Darija were retained.
|
51 |
+
|
52 |
+
---
|
53 |
+
|
54 |
+
## Dataset Structure
|
55 |
+
|
56 |
+
- `text`: The raw text sample in Moroccan Darija.
|
57 |
+
- `prediction`:
|
58 |
+
- `prediction_confidence`: Model confidence score for each sample.
|
59 |
+
- `prediction_label`: Model predicted label.
|
60 |
+
|
61 |
+
Example entry:
|
62 |
+
```json
|
63 |
+
{
|
64 |
+
"text": "السلام عليكم، كيف دايرين؟",
|
65 |
+
"prediction": {
|
66 |
+
'prediction_confidence': 0.652466607093811,
|
67 |
+
'prediction_label': 'Morocco'
|
68 |
+
}
|
69 |
+
}
|