Create dataset.py (#2)
Browse files- Create dataset.py (e36c7a98d0fb39bad6c873db1fbcb328df5fb17c)
Co-authored-by: Oma Vieyra <[email protected]>
- dataset.py +202 -0
dataset.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import csv
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
|
9 |
+
_DESCRIPTION = """
|
10 |
+
A dataset g and interpretation.
|
11 |
+
"""
|
12 |
+
|
13 |
+
_CITATION = """
|
14 |
+
"""
|
15 |
+
|
16 |
+
_HOMEPAGE = "https://github.com/aztro/mabama-v"
|
17 |
+
|
18 |
+
_LICENSE = "CC0, also see https://www.europarl.europa.eu/legal-notice/es/"
|
19 |
+
|
20 |
+
_ASR_LANGUAGES = [
|
21 |
+
"es"
|
22 |
+
|
23 |
+
]
|
24 |
+
_ASR_ACCENTED_LANGUAGES = [
|
25 |
+
"es_accented"
|
26 |
+
]
|
27 |
+
|
28 |
+
_LANGUAGES = _ASR_LANGUAGES + _ASR_ACCENTED_LANGUAGES
|
29 |
+
|
30 |
+
_BASE_DATA_DIR = "data/"
|
31 |
+
|
32 |
+
_N_SHARDS_FILE = _BASE_DATA_DIR + "n_files.json"
|
33 |
+
|
34 |
+
_AUDIO_ARCHIVE_PATH = _BASE_DATA_DIR + "es/{split}/{split}_part_{n_shard}.wav"
|
35 |
+
|
36 |
+
_METADATA_PATH = _BASE_DATA_DIR + "es/asr_{split}.csv"
|
37 |
+
|
38 |
+
|
39 |
+
class VoxpopuliConfig(datasets.BuilderConfig):
|
40 |
+
"""BuilderConfig for VoxPopuli."""
|
41 |
+
|
42 |
+
def __init__(self, name, languages="es", **kwargs):
|
43 |
+
"""
|
44 |
+
Args:
|
45 |
+
name: `string` or `List[string]`:
|
46 |
+
name of a config: either one of the supported languages or "multilang" for many languages.
|
47 |
+
By default, "multilang" config includes all languages, including accented ones.
|
48 |
+
To specify a custom set of languages, pass them to the `languages` parameter
|
49 |
+
languages: `List[string]`: if config is "multilang" can be either "all" for all available languages,
|
50 |
+
excluding accented ones (default), or a custom list of languages.
|
51 |
+
**kwargs: keyword arguments forwarded to super.
|
52 |
+
"""
|
53 |
+
if name == "es":
|
54 |
+
self.languages = _ASR_LANGUAGES if languages == "all" else languages
|
55 |
+
name = "multilang" if languages == "all" else "_".join(languages)
|
56 |
+
else:
|
57 |
+
self.languages = [name]
|
58 |
+
|
59 |
+
super().__init__(name=name, **kwargs)
|
60 |
+
|
61 |
+
|
62 |
+
class Voxpopuli(datasets.GeneratorBasedBuilder):
|
63 |
+
"""The VoxPopuli dataset."""
|
64 |
+
|
65 |
+
VERSION = datasets.Version("1.3.0") # TODO: version
|
66 |
+
BUILDER_CONFIGS = [
|
67 |
+
VoxpopuliConfig(
|
68 |
+
name=name,
|
69 |
+
version=datasets.Version("1.3.0"),
|
70 |
+
)
|
71 |
+
for name in _LANGUAGES + ["multilang"]
|
72 |
+
]
|
73 |
+
DEFAULT_WRITER_BATCH_SIZE = 256
|
74 |
+
|
75 |
+
def _info(self):
|
76 |
+
features = datasets.Features(
|
77 |
+
{
|
78 |
+
"audio_id": datasets.Value("string"),
|
79 |
+
"language": datasets.ClassLabel(names=_LANGUAGES),
|
80 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
81 |
+
"raw_text": datasets.Value("string"),
|
82 |
+
"normalized_text": datasets.Value("string"),
|
83 |
+
"gender": datasets.Value("string"), # TODO: ClassVar?
|
84 |
+
"speaker_id": datasets.Value("string"),
|
85 |
+
"is_gold_transcript": datasets.Value("bool"),
|
86 |
+
"accent": datasets.Value("string"),
|
87 |
+
}
|
88 |
+
)
|
89 |
+
return datasets.DatasetInfo(
|
90 |
+
description=_DESCRIPTION,
|
91 |
+
features=features,
|
92 |
+
homepage=_HOMEPAGE,
|
93 |
+
license=_LICENSE,
|
94 |
+
citation=_CITATION,
|
95 |
+
)
|
96 |
+
|
97 |
+
def _split_generators(self, dl_manager):
|
98 |
+
n_shards_path = dl_manager.download_and_extract(_N_SHARDS_FILE)
|
99 |
+
with open(n_shards_path) as f:
|
100 |
+
n_shards = json.load(f)
|
101 |
+
|
102 |
+
if self.config.name == "en_accented":
|
103 |
+
splits = ["test"]
|
104 |
+
else:
|
105 |
+
splits = ["train", "dev", "test"]
|
106 |
+
|
107 |
+
audio_urls = defaultdict(dict)
|
108 |
+
for split in splits:
|
109 |
+
for lang in self.config.languages:
|
110 |
+
audio_urls[split][lang] = [
|
111 |
+
_AUDIO_ARCHIVE_PATH.format(lang=lang, split=split, n_shard=i) for i in range(n_shards[lang][split])
|
112 |
+
]
|
113 |
+
|
114 |
+
meta_urls = defaultdict(dict)
|
115 |
+
for split in splits:
|
116 |
+
for lang in self.config.languages:
|
117 |
+
meta_urls[split][lang] = _METADATA_PATH.format(lang=lang, split=split)
|
118 |
+
|
119 |
+
# dl_manager.download_config.num_proc = len(urls)
|
120 |
+
|
121 |
+
meta_paths = dl_manager.download_and_extract(meta_urls)
|
122 |
+
audio_paths = dl_manager.download(audio_urls)
|
123 |
+
|
124 |
+
local_extracted_audio_paths = (
|
125 |
+
dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
|
126 |
+
{
|
127 |
+
split: {lang: [None] * len(audio_paths[split][lang]) for lang in self.config.languages} for split in splits
|
128 |
+
}
|
129 |
+
)
|
130 |
+
if self.config.name == "en_accented":
|
131 |
+
return [
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TEST,
|
134 |
+
gen_kwargs={
|
135 |
+
"audio_archives": {
|
136 |
+
lang: [dl_manager.iter_archive(archive) for archive in lang_archives]
|
137 |
+
for lang, lang_archives in audio_paths["test"].items()
|
138 |
+
},
|
139 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["test"],
|
140 |
+
"metadata_paths": meta_paths["test"],
|
141 |
+
}
|
142 |
+
),
|
143 |
+
]
|
144 |
+
|
145 |
+
return [
|
146 |
+
datasets.SplitGenerator(
|
147 |
+
name=datasets.Split.TRAIN,
|
148 |
+
gen_kwargs={
|
149 |
+
"audio_archives": {
|
150 |
+
lang: [dl_manager.iter_archive(archive) for archive in lang_archives]
|
151 |
+
for lang, lang_archives in audio_paths["train"].items()
|
152 |
+
},
|
153 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["train"],
|
154 |
+
"metadata_paths": meta_paths["train"],
|
155 |
+
}
|
156 |
+
),
|
157 |
+
datasets.SplitGenerator(
|
158 |
+
name=datasets.Split.VALIDATION,
|
159 |
+
gen_kwargs={
|
160 |
+
"audio_archives": {
|
161 |
+
lang: [dl_manager.iter_archive(archive) for archive in lang_archives]
|
162 |
+
for lang, lang_archives in audio_paths["dev"].items()
|
163 |
+
},
|
164 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["dev"],
|
165 |
+
"metadata_paths": meta_paths["dev"],
|
166 |
+
}
|
167 |
+
),
|
168 |
+
datasets.SplitGenerator(
|
169 |
+
name=datasets.Split.TEST,
|
170 |
+
gen_kwargs={
|
171 |
+
"audio_archives": {
|
172 |
+
lang: [dl_manager.iter_archive(archive) for archive in lang_archives]
|
173 |
+
for lang, lang_archives in audio_paths["test"].items()
|
174 |
+
},
|
175 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["test"],
|
176 |
+
"metadata_paths": meta_paths["test"],
|
177 |
+
}
|
178 |
+
),
|
179 |
+
]
|
180 |
+
|
181 |
+
def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):
|
182 |
+
assert len(metadata_paths) == len(audio_archives) == len(local_extracted_archives_paths)
|
183 |
+
features = ["raw_text", "normalized_text", "speaker_id", "gender", "is_gold_transcript", "accent"]
|
184 |
+
|
185 |
+
for lang in self.config.languages:
|
186 |
+
assert len(audio_archives[lang]) == len(local_extracted_archives_paths[lang])
|
187 |
+
|
188 |
+
meta_path = metadata_paths[lang]
|
189 |
+
with open(meta_path) as f:
|
190 |
+
metadata = {x["id"]: x for x in csv.DictReader(f, delimiter="\t")}
|
191 |
+
|
192 |
+
for audio_archive, local_extracted_archive_path in zip(audio_archives[lang], local_extracted_archives_paths[lang]):
|
193 |
+
for audio_filename, audio_file in audio_archive:
|
194 |
+
audio_id = audio_filename.split(os.sep)[-1].split(".wav")[0]
|
195 |
+
path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
|
196 |
+
|
197 |
+
yield audio_id, {
|
198 |
+
"audio_id": audio_id,
|
199 |
+
"language": lang,
|
200 |
+
**{feature: metadata[audio_id][feature] for feature in features},
|
201 |
+
"audio": {"path": path, "bytes": audio_file.read()},
|
202 |
+
}
|