gabrielaltay
commited on
Commit
·
9554654
1
Parent(s):
f9b32ec
upload hubscripts/bc7_litcovid_hub.py to hub from bigbio repo
Browse files- bc7_litcovid.py +215 -0
bc7_litcovid.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Dict, List, Tuple
|
17 |
+
|
18 |
+
import datasets
|
19 |
+
import pandas as pd
|
20 |
+
|
21 |
+
from .bigbiohub import text_features
|
22 |
+
from .bigbiohub import BigBioConfig
|
23 |
+
from .bigbiohub import Tasks
|
24 |
+
|
25 |
+
_LANGUAGES = ['English']
|
26 |
+
_PUBMED = True
|
27 |
+
_LOCAL = False
|
28 |
+
_CITATION = """\
|
29 |
+
@inproceedings{chen2021overview,
|
30 |
+
title = {
|
31 |
+
Overview of the BioCreative VII LitCovid Track: multi-label topic
|
32 |
+
classification for COVID-19 literature annotation
|
33 |
+
},
|
34 |
+
author = {
|
35 |
+
Chen, Qingyu and Allot, Alexis and Leaman, Robert and Do{\\u{g}}an, Rezarta
|
36 |
+
Islamaj and Lu, Zhiyong
|
37 |
+
},
|
38 |
+
year = 2021,
|
39 |
+
booktitle = {Proceedings of the seventh BioCreative challenge evaluation workshop}
|
40 |
+
}
|
41 |
+
|
42 |
+
"""
|
43 |
+
|
44 |
+
_DATASETNAME = "bc7_litcovid"
|
45 |
+
_DISPLAYNAME = "BC7-LitCovid"
|
46 |
+
|
47 |
+
_DESCRIPTION = """\
|
48 |
+
The training and development datasets contain the publicly-available \
|
49 |
+
text of over 30 thousand COVID-19-related articles and their metadata \
|
50 |
+
(e.g., title, abstract, journal). Articles in both datasets have been \
|
51 |
+
manually reviewed and articles annotated by in-house models.
|
52 |
+
"""
|
53 |
+
|
54 |
+
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/"
|
55 |
+
|
56 |
+
_LICENSE = 'License information unavailable'
|
57 |
+
|
58 |
+
_BASE = "https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/BC7-LitCovid-"
|
59 |
+
|
60 |
+
_URLS = {
|
61 |
+
_DATASETNAME: {
|
62 |
+
"train": _BASE + "Train.csv",
|
63 |
+
"validation": _BASE + "Dev.csv",
|
64 |
+
"test": _BASE + "Test-GS.csv",
|
65 |
+
},
|
66 |
+
}
|
67 |
+
|
68 |
+
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
|
69 |
+
|
70 |
+
_SOURCE_VERSION = "1.0.0"
|
71 |
+
_BIGBIO_VERSION = "1.0.0"
|
72 |
+
|
73 |
+
_CLASS_NAMES = [
|
74 |
+
"Epidemic Forecasting",
|
75 |
+
"Treatment",
|
76 |
+
"Prevention",
|
77 |
+
"Mechanism",
|
78 |
+
"Case Report",
|
79 |
+
"Transmission",
|
80 |
+
"Diagnosis",
|
81 |
+
]
|
82 |
+
|
83 |
+
|
84 |
+
class BC7LitCovidDataset(datasets.GeneratorBasedBuilder):
|
85 |
+
"""
|
86 |
+
Track 5 - LitCovid track Multi-label topic classification for
|
87 |
+
COVID-19 literature annotation
|
88 |
+
"""
|
89 |
+
|
90 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
91 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
92 |
+
|
93 |
+
BUILDER_CONFIGS = [
|
94 |
+
BigBioConfig(
|
95 |
+
name="bc7_litcovid_source",
|
96 |
+
version=SOURCE_VERSION,
|
97 |
+
description="bc7_litcovid source schema",
|
98 |
+
schema="source",
|
99 |
+
subset_id="bc7_litcovid",
|
100 |
+
),
|
101 |
+
BigBioConfig(
|
102 |
+
name="bc7_litcovid_bigbio_text",
|
103 |
+
version=BIGBIO_VERSION,
|
104 |
+
description="bc7_litcovid BigBio schema",
|
105 |
+
schema="bigbio_text",
|
106 |
+
subset_id="bc7_litcovid",
|
107 |
+
),
|
108 |
+
]
|
109 |
+
|
110 |
+
DEFAULT_CONFIG_NAME = "bc7_litcovid_source"
|
111 |
+
|
112 |
+
def _info(self) -> datasets.DatasetInfo:
|
113 |
+
|
114 |
+
if self.config.schema == "source":
|
115 |
+
|
116 |
+
features = datasets.Features(
|
117 |
+
{
|
118 |
+
"pmid": datasets.Value("string"),
|
119 |
+
"journal": datasets.Value("string"),
|
120 |
+
"title": datasets.Value("string"),
|
121 |
+
"abstract": datasets.Value("string"),
|
122 |
+
"keywords": datasets.Sequence(datasets.Value("string")),
|
123 |
+
"pub_type": datasets.Sequence(datasets.Value("string")),
|
124 |
+
"authors": datasets.Sequence(datasets.Value("string")),
|
125 |
+
"doi": datasets.Value("string"),
|
126 |
+
"labels": datasets.Sequence(
|
127 |
+
datasets.ClassLabel(names=_CLASS_NAMES)
|
128 |
+
),
|
129 |
+
}
|
130 |
+
)
|
131 |
+
|
132 |
+
elif self.config.schema == "bigbio_text":
|
133 |
+
features = text_features
|
134 |
+
|
135 |
+
return datasets.DatasetInfo(
|
136 |
+
description=_DESCRIPTION,
|
137 |
+
features=features,
|
138 |
+
homepage=_HOMEPAGE,
|
139 |
+
license=str(_LICENSE),
|
140 |
+
citation=_CITATION,
|
141 |
+
)
|
142 |
+
|
143 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
144 |
+
"""Returns SplitGenerators."""
|
145 |
+
|
146 |
+
# Download all the CSV
|
147 |
+
urls = _URLS[_DATASETNAME]
|
148 |
+
path_train = dl_manager.download(urls["train"])
|
149 |
+
path_validation = dl_manager.download(urls["validation"])
|
150 |
+
path_test = dl_manager.download(urls["test"])
|
151 |
+
|
152 |
+
return [
|
153 |
+
datasets.SplitGenerator(
|
154 |
+
name=datasets.Split.TRAIN,
|
155 |
+
gen_kwargs={
|
156 |
+
"filepath": path_train,
|
157 |
+
"split": "train",
|
158 |
+
},
|
159 |
+
),
|
160 |
+
datasets.SplitGenerator(
|
161 |
+
name=datasets.Split.TEST,
|
162 |
+
gen_kwargs={
|
163 |
+
"filepath": path_validation,
|
164 |
+
"split": "test",
|
165 |
+
},
|
166 |
+
),
|
167 |
+
datasets.SplitGenerator(
|
168 |
+
name=datasets.Split.VALIDATION,
|
169 |
+
gen_kwargs={
|
170 |
+
"filepath": path_test,
|
171 |
+
"split": "dev",
|
172 |
+
},
|
173 |
+
),
|
174 |
+
]
|
175 |
+
|
176 |
+
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
|
177 |
+
"""Yields examples as (key, example) tuples."""
|
178 |
+
|
179 |
+
idx = 0
|
180 |
+
|
181 |
+
# Load the CSV and convert it to the string format
|
182 |
+
df = pd.read_csv(filepath, sep=",").astype(str).replace({"nan": None})
|
183 |
+
|
184 |
+
for index, e in df.iterrows():
|
185 |
+
|
186 |
+
if self.config.schema == "source":
|
187 |
+
|
188 |
+
yield idx, {
|
189 |
+
"pmid": e["pmid"],
|
190 |
+
"journal": e["journal"],
|
191 |
+
"title": e["title"],
|
192 |
+
"abstract": e["abstract"],
|
193 |
+
"keywords": e["keywords"].split(";")
|
194 |
+
if e["keywords"] is not None
|
195 |
+
else [],
|
196 |
+
"pub_type": e["pub_type"].split(";")
|
197 |
+
if e["pub_type"] is not None
|
198 |
+
else [],
|
199 |
+
"authors": e["authors"].split(";")
|
200 |
+
if e["authors"] is not None
|
201 |
+
else [],
|
202 |
+
"doi": e["doi"],
|
203 |
+
"labels": e["label"].split(";"),
|
204 |
+
}
|
205 |
+
|
206 |
+
elif self.config.schema == "bigbio_text":
|
207 |
+
|
208 |
+
yield idx, {
|
209 |
+
"id": idx,
|
210 |
+
"document_id": e["pmid"],
|
211 |
+
"text": e["abstract"],
|
212 |
+
"labels": e["label"].split(";"),
|
213 |
+
}
|
214 |
+
|
215 |
+
idx += 1
|