|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, Iterable, List |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import parse_brat_file |
|
from .bigbiohub import brat_parse_to_bigbio_kb |
|
|
|
|
|
_DATASETNAME = "bionlp_st_2013_pc" |
|
_DISPLAYNAME = "BioNLP 2013 PC" |
|
|
|
_UNIFIED_VIEW_NAME = "bigbio" |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{ohta-etal-2013-overview, |
|
title = "Overview of the Pathway Curation ({PC}) task of {B}io{NLP} Shared Task 2013", |
|
author = "Ohta, Tomoko and |
|
Pyysalo, Sampo and |
|
Rak, Rafal and |
|
Rowley, Andrew and |
|
Chun, Hong-Woo and |
|
Jung, Sung-Jae and |
|
Choi, Sung-Pil and |
|
Ananiadou, Sophia and |
|
Tsujii, Jun{'}ichi", |
|
booktitle = "Proceedings of the {B}io{NLP} Shared Task 2013 Workshop", |
|
month = aug, |
|
year = "2013", |
|
address = "Sofia, Bulgaria", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/W13-2009", |
|
pages = "67--75", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
the Pathway Curation (PC) task is a main event extraction task of the BioNLP shared task (ST) 2013. |
|
The PC task concerns the automatic extraction of biomolecular reactions from text. |
|
The task setting, representation and semantics are defined with respect to pathway |
|
model standards and ontologies (SBML, BioPAX, SBO) and documents selected by relevance |
|
to specific model reactions. Two BioNLP ST 2013 participants successfully completed |
|
the PC task. The highest achieved F-score, 52.8%, indicates that event extraction is |
|
a promising approach to supporting pathway curation efforts. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/openbiocorpora/bionlp-st-2013-pc" |
|
|
|
_LICENSE = 'GENIA Project License for Annotated Corpora' |
|
|
|
_URLs = { |
|
"train": "data/train.zip", |
|
"validation": "data/devel.zip", |
|
"test": "data/test.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [ |
|
Tasks.EVENT_EXTRACTION, |
|
Tasks.NAMED_ENTITY_RECOGNITION, |
|
Tasks.COREFERENCE_RESOLUTION, |
|
] |
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class bionlp_st_2013_pc(datasets.GeneratorBasedBuilder): |
|
"""the Pathway Curation (PC) task is a main event extraction task of the BioNLP shared task (ST) 2013.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="bionlp_st_2013_pc_source", |
|
version=SOURCE_VERSION, |
|
description="bionlp_st_2013 source schema", |
|
schema="source", |
|
subset_id="bionlp_st_2013_pc", |
|
), |
|
BigBioConfig( |
|
name="bionlp_st_2013_pc_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="bionlp_st_2013_pc BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="bionlp_st_2013_pc", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "bionlp_st_2013_pc_source" |
|
|
|
_ROLE_MAPPING = { |
|
"Theme2": "Theme", |
|
"Theme3": "Theme", |
|
"Theme4": "Theme", |
|
"Participant2": "Participant", |
|
"Participant3": "Participant", |
|
"Participant4": "Participant", |
|
"Participant5": "Participant", |
|
"Product2": "Product", |
|
"Product3": "Product", |
|
"Product4": "Product", |
|
} |
|
|
|
def _info(self): |
|
""" |
|
- `features` defines the schema of the parsed data set. The schema depends on the |
|
chosen `config`: If it is `_SOURCE_VIEW_NAME` the schema is the schema of the |
|
original data. If `config` is `_UNIFIED_VIEW_NAME`, then the schema is the |
|
canonical KB-task schema defined in `biomedical/schemas/kb.py`. |
|
""" |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"text_bound_annotations": [ |
|
{ |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"type": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
} |
|
], |
|
"events": [ |
|
{ |
|
"trigger": datasets.Value( |
|
"string" |
|
), |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arguments": datasets.Sequence( |
|
{ |
|
"role": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"head": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"tail": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"type": datasets.Value("string"), |
|
} |
|
], |
|
"equivalences": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"ref_ids": datasets.Sequence(datasets.Value("string")), |
|
} |
|
], |
|
"attributes": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
"value": datasets.Value("string"), |
|
} |
|
], |
|
"normalizations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
"resource_name": datasets.Value( |
|
"string" |
|
), |
|
"cuid": datasets.Value( |
|
"string" |
|
), |
|
"text": datasets.Value( |
|
"string" |
|
), |
|
} |
|
], |
|
}, |
|
) |
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
features=features, |
|
|
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=str(_LICENSE), |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
data_files = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data_files": dl_manager.iter_files(data_files["train"])}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"data_files": dl_manager.iter_files(data_files["validation"])}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"data_files": dl_manager.iter_files(data_files["test"])}, |
|
), |
|
] |
|
|
|
def _standardize_arguments_roles(self, kb_example: Dict) -> Dict: |
|
|
|
for event in kb_example["events"]: |
|
for argument in event["arguments"]: |
|
role = argument["role"] |
|
argument["role"] = self._ROLE_MAPPING.get(role, role) |
|
|
|
return kb_example |
|
|
|
def _generate_examples(self, data_files: Iterable[str]): |
|
if self.config.schema == "source": |
|
guid = 0 |
|
for data_file in data_files: |
|
txt_file = Path(data_file) |
|
if txt_file.suffix != ".txt": |
|
continue |
|
example = parse_brat_file(txt_file) |
|
example["id"] = str(guid) |
|
yield guid, example |
|
guid += 1 |
|
elif self.config.schema == "bigbio_kb": |
|
guid = 0 |
|
for data_file in data_files: |
|
txt_file = Path(data_file) |
|
if txt_file.suffix != ".txt": |
|
continue |
|
example = brat_parse_to_bigbio_kb( |
|
parse_brat_file(txt_file) |
|
) |
|
example = self._standardize_arguments_roles(example) |
|
example["id"] = str(guid) |
|
yield guid, example |
|
guid += 1 |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|