File size: 12,153 Bytes
e072fcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Dict, List, Tuple
import datasets
from bioc import biocxml
from .bigbiohub import BigBioConfig, Tasks, kb_features
_LOCAL = True
_CITATION = """\
@article{10.1093/jamiaopen/ooab025,
author = {Kittner, Madeleine and Lamping, Mario and Rieke, Damian T and Götze, Julian and Bajwa, Bariya and
Jelas, Ivan and Rüter, Gina and Hautow, Hanjo and Sänger, Mario and Habibi, Maryam and Zettwitz, Marit and
Bortoli, Till de and Ostermann, Leonie and Ševa, Jurica and Starlinger, Johannes and Kohlbacher, Oliver and
Malek, Nisar P and Keilholz, Ulrich and Leser, Ulf},
title = "{Annotation and initial evaluation of a large annotated German oncological corpus}",
journal = {JAMIA Open},
volume = {4},
number = {2},
year = {2021},
month = {04},
issn = {2574-2531},
doi = {10.1093/jamiaopen/ooab025},
url = {https://doi.org/10.1093/jamiaopen/ooab025},
note = {ooab025},
eprint = {https://academic.oup.com/jamiaopen/article-pdf/4/2/ooab025/38830128/ooab025.pdf},
}
"""
_DESCRIPTION = """\
BRONCO150 is a corpus containing selected sentences of 150 German discharge summaries of cancer patients (hepatocelluar
carcinoma or melanoma) treated at Charite Universitaetsmedizin Berlin or Universitaetsklinikum Tuebingen. All discharge
summaries were manually anonymized. The original documents were scrambled at the sentence level to make reconstruction
of individual reports impossible.
"""
_HOMEPAGE = "https://www2.informatik.hu-berlin.de/~leser/bronco/index.html"
_LICENSE = "DUA"
_URLS = {}
_PUBMED = False
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
_DATASETNAME = "bronco"
_DISPLAYNAME = "BRONCO"
_LANGUAGES = ["German"]
class Bronco(datasets.GeneratorBasedBuilder):
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
DEFAULT_CONFIG_NAME = "bronco_bigbio_kb"
BUILDER_CONFIGS = [
BigBioConfig(
name="bronco_source",
version=SOURCE_VERSION,
description="BRONCO source schema",
schema="source",
subset_id="bronco",
),
BigBioConfig(
name="bronco_bigbio_kb",
version=BIGBIO_VERSION,
description="BRONCO BigBio schema",
schema="bigbio_kb",
subset_id="bronco",
),
]
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"passage": {
"offset": datasets.Value("int32"),
"text": datasets.Value("string"),
"annotation": [
{
"id": datasets.Value("string"),
"infon": {
"file": datasets.Value("string"),
"type": datasets.Value("string"),
},
"location": [
{
"offset": datasets.Value("int32"),
"length": datasets.Value("int32"),
}
],
"text": datasets.Value("string"),
}
],
"relation": [
{
"id": datasets.Value("string"),
"infon": {
"file": datasets.Value("string"),
"type": datasets.Value("string"),
"norm/atr": datasets.Value("string"),
"string": datasets.Value("string"),
},
"node": [
{
"refid": datasets.Value("string"),
"role": datasets.Value("string"),
}
],
}
],
},
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
if self.config.data_dir is None:
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.")
else:
data_dir = self.config.data_dir
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "bioCFiles", "BRONCO150.xml"),
"split": "train",
},
),
]
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
with open(filepath, "r") as fp:
data = biocxml.load(fp).documents
if self.config.schema == "source":
for uid, doc in enumerate(data):
out = {
"id": doc.id,
"passage": {
"offset": doc.passages[0].offset,
"text": doc.passages[0].text,
"annotation": [],
"relation": [],
},
}
# handle entities
for annotation in doc.passages[0].annotations:
anno = {
"id": annotation.id,
"infon": annotation.infons,
"text": annotation.text,
"location": [],
}
for location in annotation.locations:
anno["location"].append(
{
"offset": location.offset,
"length": location.length,
}
)
out["passage"]["annotation"].append(anno)
# handle relations
for relation in doc.passages[0].relations:
rel = {
"id": relation.id,
"node": [],
}
# relation.infons has different keys depending on the relation type
# these must be unified to comply with a fixed schema
if relation.infons["type"] == "Normalization":
rel["infon"] = {
"file": relation.infons["file"],
"type": relation.infons["type"],
"norm/atr": relation.infons["normalization type"],
"string": relation.infons["string"],
}
else:
rel["infon"] = {
"file": relation.infons["file"],
"type": relation.infons["type"],
"norm/atr": relation.infons["attribute type"],
"string": "",
}
for node in relation.nodes:
rel["node"].append(
{
"refid": node.refid,
"role": node.role,
}
)
out["passage"]["relation"].append(rel)
yield uid, out
elif self.config.schema == "bigbio_kb":
# reorder the documents so they appear in increasing order
ordered_data = [data[2], data[4], data[0], data[3], data[1]]
for uid, doc in enumerate(ordered_data):
out = {
"id": uid,
"document_id": doc.id,
"passages": [],
"entities": [],
"events": [],
"coreferences": [],
"relations": [],
}
# catch all normalized entities for lookup
norm_map = {}
for rel in doc.passages[0].relations:
if rel.infons["type"] == "Normalization":
norm_map[rel.nodes[0].role] = rel.nodes[0].refid
# handle passages - split text into sentences
for i, passage in enumerate(doc.passages[0].text.split("\n")):
# match the offsets on the text after removing \n
if i == 0:
marker = 0
else:
marker = out["passages"][-1]["offsets"][-1][-1] + 1
out["passages"].append(
{
"id": f"{uid}-{i}",
"text": [passage],
"type": "sentence",
"offsets": [[marker, marker + len(passage)]],
}
)
# handle entities
for ent in doc.passages[0].annotations:
offsets = []
text_s = []
for loc in ent.locations:
offsets.append([loc.offset, loc.offset + loc.length])
text_s.append(doc.passages[0].text[loc.offset: loc.offset + loc.length])
out["entities"].append(
{
"id": f"{uid}-{ent.id}",
"type": ent.infons["type"],
"text": text_s,
"offsets": offsets,
"normalized": [
{
"db_name": norm_map.get(ent.id, ":").split(":")[0],
# replace faulty connectors in db_ids
"db_id": norm_map.get(ent.id, ":")
.split(":")[1]
.replace(",", ".")
.replace("+", ""),
}
],
}
)
yield uid, out
|