|
from collections import defaultdict |
|
from dataclasses import dataclass |
|
from enum import Enum |
|
import logging |
|
from pathlib import Path |
|
from types import SimpleNamespace |
|
from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple |
|
|
|
import datasets |
|
|
|
if TYPE_CHECKING: |
|
import bioc |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>") |
|
|
|
|
|
@dataclass |
|
class BigBioConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for BigBio.""" |
|
|
|
name: str = None |
|
version: datasets.Version = None |
|
description: str = None |
|
schema: str = None |
|
subset_id: str = None |
|
|
|
|
|
class Tasks(Enum): |
|
NAMED_ENTITY_RECOGNITION = "NER" |
|
NAMED_ENTITY_DISAMBIGUATION = "NED" |
|
EVENT_EXTRACTION = "EE" |
|
RELATION_EXTRACTION = "RE" |
|
COREFERENCE_RESOLUTION = "COREF" |
|
QUESTION_ANSWERING = "QA" |
|
TEXTUAL_ENTAILMENT = "TE" |
|
SEMANTIC_SIMILARITY = "STS" |
|
TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS" |
|
PARAPHRASING = "PARA" |
|
TRANSLATION = "TRANSL" |
|
SUMMARIZATION = "SUM" |
|
TEXT_CLASSIFICATION = "TXTCLASS" |
|
|
|
|
|
entailment_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"premise": datasets.Value("string"), |
|
"hypothesis": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
|
|
pairs_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text_1": datasets.Value("string"), |
|
"text_2": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
|
|
qa_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"question_id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"choices": [datasets.Value("string")], |
|
"context": datasets.Value("string"), |
|
"answer": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
|
|
text_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"labels": [datasets.Value("string")], |
|
} |
|
) |
|
|
|
text2text_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text_1": datasets.Value("string"), |
|
"text_2": datasets.Value("string"), |
|
"text_1_name": datasets.Value("string"), |
|
"text_2_name": datasets.Value("string"), |
|
} |
|
) |
|
|
|
kb_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"passages": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
} |
|
], |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
"events": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
|
|
"trigger": { |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
}, |
|
"arguments": [ |
|
{ |
|
"role": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
"coreferences": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"entity_ids": datasets.Sequence(datasets.Value("string")), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arg1_id": datasets.Value("string"), |
|
"arg2_id": datasets.Value("string"), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
} |
|
) |
|
|
|
|
|
TASK_TO_SCHEMA = { |
|
Tasks.NAMED_ENTITY_RECOGNITION.name: "KB", |
|
Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB", |
|
Tasks.EVENT_EXTRACTION.name: "KB", |
|
Tasks.RELATION_EXTRACTION.name: "KB", |
|
Tasks.COREFERENCE_RESOLUTION.name: "KB", |
|
Tasks.QUESTION_ANSWERING.name: "QA", |
|
Tasks.TEXTUAL_ENTAILMENT.name: "TE", |
|
Tasks.SEMANTIC_SIMILARITY.name: "PAIRS", |
|
Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS", |
|
Tasks.PARAPHRASING.name: "T2T", |
|
Tasks.TRANSLATION.name: "T2T", |
|
Tasks.SUMMARIZATION.name: "T2T", |
|
Tasks.TEXT_CLASSIFICATION.name: "TEXT", |
|
} |
|
|
|
SCHEMA_TO_TASKS = defaultdict(set) |
|
for task, schema in TASK_TO_SCHEMA.items(): |
|
SCHEMA_TO_TASKS[schema].add(task) |
|
SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS) |
|
|
|
VALID_TASKS = set(TASK_TO_SCHEMA.keys()) |
|
VALID_SCHEMAS = set(TASK_TO_SCHEMA.values()) |
|
|
|
SCHEMA_TO_FEATURES = { |
|
"KB": kb_features, |
|
"QA": qa_features, |
|
"TE": entailment_features, |
|
"T2T": text2text_features, |
|
"TEXT": text_features, |
|
"PAIRS": pairs_features, |
|
} |
|
|
|
|
|
def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple: |
|
|
|
offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations] |
|
|
|
text = ann.text |
|
|
|
if len(offsets) > 1: |
|
i = 0 |
|
texts = [] |
|
for start, end in offsets: |
|
chunk_len = end - start |
|
texts.append(text[i : chunk_len + i]) |
|
i += chunk_len |
|
while i < len(text) and text[i] == " ": |
|
i += 1 |
|
else: |
|
texts = [text] |
|
|
|
return offsets, texts |
|
|
|
|
|
def remove_prefix(a: str, prefix: str) -> str: |
|
if a.startswith(prefix): |
|
a = a[len(prefix) :] |
|
return a |
|
|
|
|
|
def parse_brat_file( |
|
txt_file: Path, |
|
annotation_file_suffixes: List[str] = None, |
|
parse_notes: bool = False, |
|
) -> Dict: |
|
""" |
|
Parse a brat file into the schema defined below. |
|
`txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt' |
|
Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files, |
|
e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'. |
|
Will include annotator notes, when `parse_notes == True`. |
|
brat_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger |
|
{ |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"type": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
} |
|
], |
|
"events": [ # E line in brat |
|
{ |
|
"trigger": datasets.Value( |
|
"string" |
|
), # refers to the text_bound_annotation of the trigger, |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arguments": datasets.Sequence( |
|
{ |
|
"role": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
], |
|
"relations": [ # R line in brat |
|
{ |
|
"id": datasets.Value("string"), |
|
"head": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"tail": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"type": datasets.Value("string"), |
|
} |
|
], |
|
"equivalences": [ # Equiv line in brat |
|
{ |
|
"id": datasets.Value("string"), |
|
"ref_ids": datasets.Sequence(datasets.Value("string")), |
|
} |
|
], |
|
"attributes": [ # M or A lines in brat |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
"value": datasets.Value("string"), |
|
} |
|
], |
|
"normalizations": [ # N lines in brat |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
"resource_name": datasets.Value( |
|
"string" |
|
), # Name of the resource, e.g. "Wikipedia" |
|
"cuid": datasets.Value( |
|
"string" |
|
), # ID in the resource, e.g. 534366 |
|
"text": datasets.Value( |
|
"string" |
|
), # Human readable description/name of the entity, e.g. "Barack Obama" |
|
} |
|
], |
|
### OPTIONAL: Only included when `parse_notes == True` |
|
"notes": [ # # lines in brat |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
], |
|
}, |
|
) |
|
""" |
|
|
|
example = {} |
|
example["document_id"] = txt_file.with_suffix("").name |
|
with txt_file.open() as f: |
|
example["text"] = f.read() |
|
|
|
|
|
|
|
if annotation_file_suffixes is None: |
|
annotation_file_suffixes = [".a1", ".a2", ".ann"] |
|
|
|
if len(annotation_file_suffixes) == 0: |
|
raise AssertionError( |
|
"At least one suffix for the to-be-read annotation files should be given!" |
|
) |
|
|
|
ann_lines = [] |
|
for suffix in annotation_file_suffixes: |
|
annotation_file = txt_file.with_suffix(suffix) |
|
if annotation_file.exists(): |
|
with annotation_file.open() as f: |
|
ann_lines.extend(f.readlines()) |
|
|
|
example["text_bound_annotations"] = [] |
|
example["events"] = [] |
|
example["relations"] = [] |
|
example["equivalences"] = [] |
|
example["attributes"] = [] |
|
example["normalizations"] = [] |
|
|
|
if parse_notes: |
|
example["notes"] = [] |
|
|
|
for line in ann_lines: |
|
line = line.strip() |
|
if not line: |
|
continue |
|
|
|
if line.startswith("T"): |
|
ann = {} |
|
fields = line.split("\t") |
|
|
|
ann["id"] = fields[0] |
|
ann["type"] = fields[1].split()[0] |
|
ann["offsets"] = [] |
|
span_str = remove_prefix(fields[1], (ann["type"] + " ")) |
|
text = fields[2] |
|
for span in span_str.split(";"): |
|
start, end = span.split() |
|
ann["offsets"].append([int(start), int(end)]) |
|
|
|
|
|
ann["text"] = [] |
|
if len(ann["offsets"]) > 1: |
|
i = 0 |
|
for start, end in ann["offsets"]: |
|
chunk_len = end - start |
|
ann["text"].append(text[i : chunk_len + i]) |
|
i += chunk_len |
|
while i < len(text) and text[i] == " ": |
|
i += 1 |
|
else: |
|
ann["text"] = [text] |
|
|
|
example["text_bound_annotations"].append(ann) |
|
|
|
elif line.startswith("E"): |
|
ann = {} |
|
fields = line.split("\t") |
|
|
|
ann["id"] = fields[0] |
|
|
|
ann["type"], ann["trigger"] = fields[1].split()[0].split(":") |
|
|
|
ann["arguments"] = [] |
|
for role_ref_id in fields[1].split()[1:]: |
|
argument = { |
|
"role": (role_ref_id.split(":"))[0], |
|
"ref_id": (role_ref_id.split(":"))[1], |
|
} |
|
ann["arguments"].append(argument) |
|
|
|
example["events"].append(ann) |
|
|
|
elif line.startswith("R"): |
|
ann = {} |
|
fields = line.split("\t") |
|
|
|
ann["id"] = fields[0] |
|
ann["type"] = fields[1].split()[0] |
|
|
|
ann["head"] = { |
|
"role": fields[1].split()[1].split(":")[0], |
|
"ref_id": fields[1].split()[1].split(":")[1], |
|
} |
|
ann["tail"] = { |
|
"role": fields[1].split()[2].split(":")[0], |
|
"ref_id": fields[1].split()[2].split(":")[1], |
|
} |
|
|
|
example["relations"].append(ann) |
|
|
|
|
|
|
|
|
|
|
|
elif line.startswith("*"): |
|
ann = {} |
|
fields = line.split("\t") |
|
|
|
ann["id"] = fields[0] |
|
ann["ref_ids"] = fields[1].split()[1:] |
|
|
|
example["equivalences"].append(ann) |
|
|
|
elif line.startswith("A") or line.startswith("M"): |
|
ann = {} |
|
fields = line.split("\t") |
|
|
|
ann["id"] = fields[0] |
|
|
|
info = fields[1].split() |
|
ann["type"] = info[0] |
|
ann["ref_id"] = info[1] |
|
|
|
if len(info) > 2: |
|
ann["value"] = info[2] |
|
else: |
|
ann["value"] = "" |
|
|
|
example["attributes"].append(ann) |
|
|
|
elif line.startswith("N"): |
|
ann = {} |
|
fields = line.split("\t") |
|
|
|
ann["id"] = fields[0] |
|
ann["text"] = fields[2] |
|
|
|
info = fields[1].split() |
|
|
|
ann["type"] = info[0] |
|
ann["ref_id"] = info[1] |
|
ann["resource_name"] = info[2].split(":")[0] |
|
ann["cuid"] = info[2].split(":")[1] |
|
example["normalizations"].append(ann) |
|
|
|
elif parse_notes and line.startswith("#"): |
|
ann = {} |
|
fields = line.split("\t") |
|
|
|
ann["id"] = fields[0] |
|
ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL |
|
|
|
info = fields[1].split() |
|
|
|
ann["type"] = info[0] |
|
ann["ref_id"] = info[1] |
|
example["notes"].append(ann) |
|
|
|
return example |
|
|
|
|
|
def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict: |
|
""" |
|
Transform a brat parse (conforming to the standard brat schema) obtained with |
|
`parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py) |
|
:param brat_parse: |
|
""" |
|
|
|
unified_example = {} |
|
|
|
|
|
|
|
id_prefix = brat_parse["document_id"] + "_" |
|
|
|
|
|
unified_example["document_id"] = brat_parse["document_id"] |
|
unified_example["passages"] = [ |
|
{ |
|
"id": id_prefix + "_text", |
|
"type": "abstract", |
|
"text": [brat_parse["text"]], |
|
"offsets": [[0, len(brat_parse["text"])]], |
|
} |
|
] |
|
|
|
|
|
ref_id_to_normalizations = defaultdict(list) |
|
for normalization in brat_parse["normalizations"]: |
|
ref_id_to_normalizations[normalization["ref_id"]].append( |
|
{ |
|
"db_name": normalization["resource_name"], |
|
"db_id": normalization["cuid"], |
|
} |
|
) |
|
|
|
|
|
unified_example["events"] = [] |
|
non_event_ann = brat_parse["text_bound_annotations"].copy() |
|
for event in brat_parse["events"]: |
|
event = event.copy() |
|
event["id"] = id_prefix + event["id"] |
|
trigger = next( |
|
tr |
|
for tr in brat_parse["text_bound_annotations"] |
|
if tr["id"] == event["trigger"] |
|
) |
|
if trigger in non_event_ann: |
|
non_event_ann.remove(trigger) |
|
event["trigger"] = { |
|
"text": trigger["text"].copy(), |
|
"offsets": trigger["offsets"].copy(), |
|
} |
|
for argument in event["arguments"]: |
|
argument["ref_id"] = id_prefix + argument["ref_id"] |
|
|
|
unified_example["events"].append(event) |
|
|
|
unified_example["entities"] = [] |
|
anno_ids = [ref_id["id"] for ref_id in non_event_ann] |
|
for ann in non_event_ann: |
|
entity_ann = ann.copy() |
|
entity_ann["id"] = id_prefix + entity_ann["id"] |
|
entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]] |
|
unified_example["entities"].append(entity_ann) |
|
|
|
|
|
unified_example["relations"] = [] |
|
skipped_relations = set() |
|
for ann in brat_parse["relations"]: |
|
if ( |
|
ann["head"]["ref_id"] not in anno_ids |
|
or ann["tail"]["ref_id"] not in anno_ids |
|
): |
|
skipped_relations.add(ann["id"]) |
|
continue |
|
unified_example["relations"].append( |
|
{ |
|
"arg1_id": id_prefix + ann["head"]["ref_id"], |
|
"arg2_id": id_prefix + ann["tail"]["ref_id"], |
|
"id": id_prefix + ann["id"], |
|
"type": ann["type"], |
|
"normalized": [], |
|
} |
|
) |
|
if len(skipped_relations) > 0: |
|
example_id = brat_parse["document_id"] |
|
logger.info( |
|
f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities." |
|
f" Skip (for now): " |
|
f"{list(skipped_relations)}" |
|
) |
|
|
|
|
|
unified_example["coreferences"] = [] |
|
for i, ann in enumerate(brat_parse["equivalences"], start=1): |
|
is_entity_cluster = True |
|
for ref_id in ann["ref_ids"]: |
|
if not ref_id.startswith("T"): |
|
is_entity_cluster = False |
|
elif ref_id not in anno_ids: |
|
is_entity_cluster = False |
|
if is_entity_cluster: |
|
entity_ids = [id_prefix + i for i in ann["ref_ids"]] |
|
unified_example["coreferences"].append( |
|
{"id": id_prefix + str(i), "entity_ids": entity_ids} |
|
) |
|
return unified_example |