File size: 19,286 Bytes
daf7a75 be18ceb daf7a75 be18ceb 8cb353d daf7a75 8cb353d daf7a75 be18ceb daf7a75 de1c316 8cb353d daf7a75 de1c316 daf7a75 de1c316 daf7a75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
from collections import defaultdict
from dataclasses import dataclass
from enum import Enum
import logging
from pathlib import Path
from types import SimpleNamespace
from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
import datasets
if TYPE_CHECKING:
import bioc
logger = logging.getLogger(__name__)
BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
@dataclass
class BigBioConfig(datasets.BuilderConfig):
"""BuilderConfig for BigBio."""
name: str = None
version: datasets.Version = None
description: str = None
schema: str = None
subset_id: str = None
class Tasks(Enum):
NAMED_ENTITY_RECOGNITION = "NER"
NAMED_ENTITY_DISAMBIGUATION = "NED"
EVENT_EXTRACTION = "EE"
RELATION_EXTRACTION = "RE"
COREFERENCE_RESOLUTION = "COREF"
QUESTION_ANSWERING = "QA"
TEXTUAL_ENTAILMENT = "TE"
SEMANTIC_SIMILARITY = "STS"
TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
PARAPHRASING = "PARA"
TRANSLATION = "TRANSL"
SUMMARIZATION = "SUM"
TEXT_CLASSIFICATION = "TXTCLASS"
entailment_features = datasets.Features(
{
"id": datasets.Value("string"),
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
pairs_features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"text_1": datasets.Value("string"),
"text_2": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
qa_features = datasets.Features(
{
"id": datasets.Value("string"),
"question_id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"question": datasets.Value("string"),
"type": datasets.Value("string"),
"choices": [datasets.Value("string")],
"context": datasets.Value("string"),
"answer": datasets.Sequence(datasets.Value("string")),
}
)
text_features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"labels": [datasets.Value("string")],
}
)
text2text_features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"text_1": datasets.Value("string"),
"text_2": datasets.Value("string"),
"text_1_name": datasets.Value("string"),
"text_2_name": datasets.Value("string"),
}
)
kb_features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"passages": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
}
],
"entities": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
"normalized": [
{
"db_name": datasets.Value("string"),
"db_id": datasets.Value("string"),
}
],
}
],
"events": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
# refers to the text_bound_annotation of the trigger
"trigger": {
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
},
"arguments": [
{
"role": datasets.Value("string"),
"ref_id": datasets.Value("string"),
}
],
}
],
"coreferences": [
{
"id": datasets.Value("string"),
"entity_ids": datasets.Sequence(datasets.Value("string")),
}
],
"relations": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"arg1_id": datasets.Value("string"),
"arg2_id": datasets.Value("string"),
"normalized": [
{
"db_name": datasets.Value("string"),
"db_id": datasets.Value("string"),
}
],
}
],
}
)
TASK_TO_SCHEMA = {
Tasks.NAMED_ENTITY_RECOGNITION.name: "KB",
Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB",
Tasks.EVENT_EXTRACTION.name: "KB",
Tasks.RELATION_EXTRACTION.name: "KB",
Tasks.COREFERENCE_RESOLUTION.name: "KB",
Tasks.QUESTION_ANSWERING.name: "QA",
Tasks.TEXTUAL_ENTAILMENT.name: "TE",
Tasks.SEMANTIC_SIMILARITY.name: "PAIRS",
Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS",
Tasks.PARAPHRASING.name: "T2T",
Tasks.TRANSLATION.name: "T2T",
Tasks.SUMMARIZATION.name: "T2T",
Tasks.TEXT_CLASSIFICATION.name: "TEXT",
}
SCHEMA_TO_TASKS = defaultdict(set)
for task, schema in TASK_TO_SCHEMA.items():
SCHEMA_TO_TASKS[schema].add(task)
SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS)
VALID_TASKS = set(TASK_TO_SCHEMA.keys())
VALID_SCHEMAS = set(TASK_TO_SCHEMA.values())
SCHEMA_TO_FEATURES = {
"KB": kb_features,
"QA": qa_features,
"TE": entailment_features,
"T2T": text2text_features,
"TEXT": text_features,
"PAIRS": pairs_features,
}
def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
text = ann.text
if len(offsets) > 1:
i = 0
texts = []
for start, end in offsets:
chunk_len = end - start
texts.append(text[i : chunk_len + i])
i += chunk_len
while i < len(text) and text[i] == " ":
i += 1
else:
texts = [text]
return offsets, texts
def remove_prefix(a: str, prefix: str) -> str:
if a.startswith(prefix):
a = a[len(prefix) :]
return a
def parse_brat_file(
txt_file: Path,
annotation_file_suffixes: List[str] = None,
parse_notes: bool = False,
) -> Dict:
"""
Parse a brat file into the schema defined below.
`txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
Will include annotator notes, when `parse_notes == True`.
brat_features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger
{
"offsets": datasets.Sequence([datasets.Value("int32")]),
"text": datasets.Sequence(datasets.Value("string")),
"type": datasets.Value("string"),
"id": datasets.Value("string"),
}
],
"events": [ # E line in brat
{
"trigger": datasets.Value(
"string"
), # refers to the text_bound_annotation of the trigger,
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"arguments": datasets.Sequence(
{
"role": datasets.Value("string"),
"ref_id": datasets.Value("string"),
}
),
}
],
"relations": [ # R line in brat
{
"id": datasets.Value("string"),
"head": {
"ref_id": datasets.Value("string"),
"role": datasets.Value("string"),
},
"tail": {
"ref_id": datasets.Value("string"),
"role": datasets.Value("string"),
},
"type": datasets.Value("string"),
}
],
"equivalences": [ # Equiv line in brat
{
"id": datasets.Value("string"),
"ref_ids": datasets.Sequence(datasets.Value("string")),
}
],
"attributes": [ # M or A lines in brat
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"ref_id": datasets.Value("string"),
"value": datasets.Value("string"),
}
],
"normalizations": [ # N lines in brat
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"ref_id": datasets.Value("string"),
"resource_name": datasets.Value(
"string"
), # Name of the resource, e.g. "Wikipedia"
"cuid": datasets.Value(
"string"
), # ID in the resource, e.g. 534366
"text": datasets.Value(
"string"
), # Human readable description/name of the entity, e.g. "Barack Obama"
}
],
### OPTIONAL: Only included when `parse_notes == True`
"notes": [ # # lines in brat
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"ref_id": datasets.Value("string"),
"text": datasets.Value("string"),
}
],
},
)
"""
example = {}
example["document_id"] = txt_file.with_suffix("").name
with txt_file.open() as f:
example["text"] = f.read()
# If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
# for event extraction
if annotation_file_suffixes is None:
annotation_file_suffixes = [".a1", ".a2", ".ann"]
if len(annotation_file_suffixes) == 0:
raise AssertionError(
"At least one suffix for the to-be-read annotation files should be given!"
)
ann_lines = []
for suffix in annotation_file_suffixes:
annotation_file = txt_file.with_suffix(suffix)
try:
with annotation_file.open() as f:
ann_lines.extend(f.readlines())
except Exception:
continue
example["text_bound_annotations"] = []
example["events"] = []
example["relations"] = []
example["equivalences"] = []
example["attributes"] = []
example["normalizations"] = []
if parse_notes:
example["notes"] = []
for line in ann_lines:
line = line.strip()
if not line:
continue
if line.startswith("T"): # Text bound
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["type"] = fields[1].split()[0]
ann["offsets"] = []
span_str = remove_prefix(fields[1], (ann["type"] + " "))
text = fields[2]
for span in span_str.split(";"):
start, end = span.split()
ann["offsets"].append([int(start), int(end)])
# Heuristically split text of discontiguous entities into chunks
ann["text"] = []
if len(ann["offsets"]) > 1:
i = 0
for start, end in ann["offsets"]:
chunk_len = end - start
ann["text"].append(text[i : chunk_len + i])
i += chunk_len
while i < len(text) and text[i] == " ":
i += 1
else:
ann["text"] = [text]
example["text_bound_annotations"].append(ann)
elif line.startswith("E"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
ann["arguments"] = []
for role_ref_id in fields[1].split()[1:]:
argument = {
"role": (role_ref_id.split(":"))[0],
"ref_id": (role_ref_id.split(":"))[1],
}
ann["arguments"].append(argument)
example["events"].append(ann)
elif line.startswith("R"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["type"] = fields[1].split()[0]
ann["head"] = {
"role": fields[1].split()[1].split(":")[0],
"ref_id": fields[1].split()[1].split(":")[1],
}
ann["tail"] = {
"role": fields[1].split()[2].split(":")[0],
"ref_id": fields[1].split()[2].split(":")[1],
}
example["relations"].append(ann)
# '*' seems to be the legacy way to mark equivalences,
# but I couldn't find any info on the current way
# this might have to be adapted dependent on the brat version
# of the annotation
elif line.startswith("*"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["ref_ids"] = fields[1].split()[1:]
example["equivalences"].append(ann)
elif line.startswith("A") or line.startswith("M"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
info = fields[1].split()
ann["type"] = info[0]
ann["ref_id"] = info[1]
if len(info) > 2:
ann["value"] = info[2]
else:
ann["value"] = ""
example["attributes"].append(ann)
elif line.startswith("N"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["text"] = fields[2]
info = fields[1].split()
ann["type"] = info[0]
ann["ref_id"] = info[1]
ann["resource_name"] = info[2].split(":")[0]
ann["cuid"] = info[2].split(":")[1]
example["normalizations"].append(ann)
elif parse_notes and line.startswith("#"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
info = fields[1].split()
ann["type"] = info[0]
ann["ref_id"] = info[1]
example["notes"].append(ann)
return example
def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
"""
Transform a brat parse (conforming to the standard brat schema) obtained with
`parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
:param brat_parse:
"""
unified_example = {}
# Prefix all ids with document id to ensure global uniqueness,
# because brat ids are only unique within their document
id_prefix = brat_parse["document_id"] + "_"
# identical
unified_example["document_id"] = brat_parse["document_id"]
unified_example["passages"] = [
{
"id": id_prefix + "_text",
"type": "abstract",
"text": [brat_parse["text"]],
"offsets": [[0, len(brat_parse["text"])]],
}
]
# get normalizations
ref_id_to_normalizations = defaultdict(list)
for normalization in brat_parse["normalizations"]:
ref_id_to_normalizations[normalization["ref_id"]].append(
{
"db_name": normalization["resource_name"],
"db_id": normalization["cuid"],
}
)
# separate entities and event triggers
unified_example["events"] = []
non_event_ann = brat_parse["text_bound_annotations"].copy()
for event in brat_parse["events"]:
event = event.copy()
event["id"] = id_prefix + event["id"]
trigger = next(
tr
for tr in brat_parse["text_bound_annotations"]
if tr["id"] == event["trigger"]
)
if trigger in non_event_ann:
non_event_ann.remove(trigger)
event["trigger"] = {
"text": trigger["text"].copy(),
"offsets": trigger["offsets"].copy(),
}
for argument in event["arguments"]:
argument["ref_id"] = id_prefix + argument["ref_id"]
unified_example["events"].append(event)
unified_example["entities"] = []
anno_ids = [ref_id["id"] for ref_id in non_event_ann]
for ann in non_event_ann:
entity_ann = ann.copy()
entity_ann["id"] = id_prefix + entity_ann["id"]
entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
unified_example["entities"].append(entity_ann)
# massage relations
unified_example["relations"] = []
skipped_relations = set()
for ann in brat_parse["relations"]:
if (
ann["head"]["ref_id"] not in anno_ids
or ann["tail"]["ref_id"] not in anno_ids
):
skipped_relations.add(ann["id"])
continue
unified_example["relations"].append(
{
"arg1_id": id_prefix + ann["head"]["ref_id"],
"arg2_id": id_prefix + ann["tail"]["ref_id"],
"id": id_prefix + ann["id"],
"type": ann["type"],
"normalized": [],
}
)
if len(skipped_relations) > 0:
example_id = brat_parse["document_id"]
logger.info(
f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
f" Skip (for now): "
f"{list(skipped_relations)}"
)
# get coreferences
unified_example["coreferences"] = []
for i, ann in enumerate(brat_parse["equivalences"], start=1):
is_entity_cluster = True
for ref_id in ann["ref_ids"]:
if not ref_id.startswith("T"): # not textbound -> no entity
is_entity_cluster = False
elif ref_id not in anno_ids: # event trigger -> no entity
is_entity_cluster = False
if is_entity_cluster:
entity_ids = [id_prefix + i for i in ann["ref_ids"]]
unified_example["coreferences"].append(
{"id": id_prefix + str(i), "entity_ids": entity_ids}
)
return unified_example
|