File size: 8,078 Bytes
7b2f556 3aec45d 7b2f556 3aec45d 7b2f556 3aec45d 7b2f556 3aec45d 7b2f556 3aec45d 7b2f556 3aec45d 7b2f556 3aec45d 7b2f556 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
EHR-Rel is a novel open-source1 biomedical concept relatedness dataset consisting of 3630 concept pairs, six times more
than the largest existing dataset. Instead of manually selecting and pairing concepts as done in previous work,
the dataset is sampled from EHRs to ensure concepts are relevant for the EHR concept retrieval task.
A detailed analysis of the concepts in the dataset reveals a far larger coverage compared to existing datasets.
"""
import csv
from pathlib import Path
from typing import Dict, Iterator, List, Tuple
import datasets
from .bigbiohub import pairs_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ["English"]
_PUBMED = False
_LOCAL = False
_CITATION = """\
@inproceedings{schulz-etal-2020-biomedical,
title = {Biomedical Concept Relatedness {--} A large {EHR}-based benchmark},
author = {Schulz, Claudia and
Levy-Kramer, Josh and
Van Assel, Camille and
Kepes, Miklos and
Hammerla, Nils},
booktitle = {Proceedings of the 28th International Conference on Computational Linguistics},
month = {dec},
year = {2020},
address = {Barcelona, Spain (Online)},
publisher = {International Committee on Computational Linguistics},
url = {https://aclanthology.org/2020.coling-main.577},
doi = {10.18653/v1/2020.coling-main.577},
pages = {6565--6575},
}
"""
_DATASETNAME = "ehr_rel"
_DISPLAYNAME = "EHR-Rel"
_DESCRIPTION = """\
EHR-Rel is a novel open-source1 biomedical concept relatedness dataset consisting of 3630 concept pairs, six times more
than the largest existing dataset. Instead of manually selecting and pairing concepts as done in previous work,
the dataset is sampled from EHRs to ensure concepts are relevant for the EHR concept retrieval task.
A detailed analysis of the concepts in the dataset reveals a far larger coverage compared to existing datasets.
"""
_HOMEPAGE = "https://github.com/babylonhealth/EHR-Rel"
_LICENSE = "Apache License 2.0"
_URLS = {
_DATASETNAME: {
"ehr_rel_a": "https://raw.githubusercontent.com/babylonhealth/EHR-Rel/master/EHR-RelA.tsv",
"ehr_rel_b": "https://raw.githubusercontent.com/babylonhealth/EHR-Rel/master/EHR-RelB.tsv",
},
}
_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class EHRRelDataset(datasets.GeneratorBasedBuilder):
"""Dataset for EHR-Rel Corpus"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="ehr_rel_source",
version=SOURCE_VERSION,
description="EHR-Rel combined source schema",
schema="source",
subset_id="ehr_rel",
),
BigBioConfig(
name="ehr_rel_a_source",
version=SOURCE_VERSION,
description="EHR-Rel-A source schema",
schema="source",
subset_id="ehr_rel_a",
),
BigBioConfig(
name="ehr_rel_b_source",
version=SOURCE_VERSION,
description="EHR-Rel-B source schema",
schema="source",
subset_id="ehr_rel_b",
),
BigBioConfig(
name="ehr_rel_bigbio_pairs",
version=BIGBIO_VERSION,
description="EHR-Rel BigBio schema",
schema="bigbio_pairs",
subset_id="ehr_rel",
),
]
DEFAULT_CONFIG_NAME = "ehr_rel_bigbio_pairs"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"document_id": datasets.Value("string"),
"snomed_id_1": datasets.Value("string"),
"snomed_label_1": datasets.Value("string"),
"snomed_id_2": datasets.Value("string"),
"snomed_label_2": datasets.Value("string"),
"rater_A": datasets.Value("string"),
"rater_B": datasets.Value("string"),
"rater_C": datasets.Value("string"),
"rater_D": datasets.Value("string"),
"rater_E": datasets.Value("string"),
"mean_rating": datasets.Value("string"),
"CUI_1": datasets.Value("string"),
"CUI_2": datasets.Value("string"),
}
)
elif self.config.schema == "bigbio_pairs":
features = pairs_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
urls = (
[urls[self.config.subset_id]]
if self.config.subset_id in urls
else list(urls.values())
)
paths = dl_manager.download(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"paths": paths},
),
]
def _generate_examples(self, paths: List[str]) -> Iterator[Tuple[str, Dict]]:
uid = -1 # want first instance to be 0
for path in paths:
document_id = Path(path).stem
with open(path, encoding="utf-8", newline="") as csv_file:
csv_reader = csv.reader(csv_file, quotechar='"', delimiter="\t")
next(csv_reader, None) # remove column headers
for id_, row in enumerate(csv_reader):
uid += 1
(
snomed_id_1,
snomed_label_1,
snomed_id_2,
snomed_label_2,
rater_A,
rater_B,
rater_C,
rater_D,
rater_E,
mean_rating,
CUI_1,
CUI_2,
) = row
if self.config.schema == "source":
yield uid, {
"document_id": document_id,
"snomed_id_1": snomed_id_1,
"snomed_label_1": snomed_label_1,
"snomed_id_2": snomed_id_1,
"snomed_label_2": snomed_label_2,
"rater_A": rater_A,
"rater_B": rater_B,
"rater_C": rater_C,
"rater_D": rater_D,
"rater_E": rater_E,
"mean_rating": mean_rating,
"CUI_1": CUI_1,
"CUI_2": CUI_2,
}
elif self.config.schema == "bigbio_pairs":
yield uid, {
"id": uid,
"document_id": document_id,
"text_1": snomed_label_1,
"text_2": snomed_label_2,
"label": mean_rating,
}
|