Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 8,078 Bytes
7b2f556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aec45d
7b2f556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aec45d
7b2f556
 
3aec45d
 
 
 
7b2f556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aec45d
 
 
 
 
 
7b2f556
 
3aec45d
7b2f556
 
 
3aec45d
7b2f556
 
 
3aec45d
 
 
7b2f556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
EHR-Rel is a novel open-source1 biomedical concept relatedness dataset consisting of 3630 concept pairs, six times more
 than the largest existing dataset.  Instead of manually selecting and pairing concepts as done in previous work,
 the dataset is sampled from EHRs to ensure concepts are relevant for the EHR concept retrieval task.
 A detailed analysis of the concepts in the dataset reveals a far larger coverage compared to existing datasets.
"""

import csv
from pathlib import Path
from typing import Dict, Iterator, List, Tuple

import datasets

from .bigbiohub import pairs_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ["English"]
_PUBMED = False
_LOCAL = False
_CITATION = """\
@inproceedings{schulz-etal-2020-biomedical,
    title = {Biomedical Concept Relatedness {--} A large {EHR}-based benchmark},
    author = {Schulz, Claudia  and
      Levy-Kramer, Josh  and
      Van Assel, Camille  and
      Kepes, Miklos  and
      Hammerla, Nils},
    booktitle = {Proceedings of the 28th International Conference on Computational Linguistics},
    month = {dec},
    year = {2020},
    address = {Barcelona, Spain (Online)},
    publisher = {International Committee on Computational Linguistics},
    url = {https://aclanthology.org/2020.coling-main.577},
    doi = {10.18653/v1/2020.coling-main.577},
    pages = {6565--6575},
    }
"""

_DATASETNAME = "ehr_rel"
_DISPLAYNAME = "EHR-Rel"

_DESCRIPTION = """\
EHR-Rel is a novel open-source1 biomedical concept relatedness dataset consisting of 3630 concept pairs, six times more
than the largest existing dataset.  Instead of manually selecting and pairing concepts as done in previous work,
the dataset is sampled from EHRs to ensure concepts are relevant for the EHR concept retrieval task.
A detailed analysis of the concepts in the dataset reveals a far larger coverage compared to existing datasets.
"""

_HOMEPAGE = "https://github.com/babylonhealth/EHR-Rel"

_LICENSE = "Apache License 2.0"

_URLS = {
    _DATASETNAME: {
        "ehr_rel_a": "https://raw.githubusercontent.com/babylonhealth/EHR-Rel/master/EHR-RelA.tsv",
        "ehr_rel_b": "https://raw.githubusercontent.com/babylonhealth/EHR-Rel/master/EHR-RelB.tsv",
    },
}

_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY]


_SOURCE_VERSION = "1.0.0"

_BIGBIO_VERSION = "1.0.0"


class EHRRelDataset(datasets.GeneratorBasedBuilder):
    """Dataset for EHR-Rel Corpus"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="ehr_rel_source",
            version=SOURCE_VERSION,
            description="EHR-Rel combined source schema",
            schema="source",
            subset_id="ehr_rel",
        ),
        BigBioConfig(
            name="ehr_rel_a_source",
            version=SOURCE_VERSION,
            description="EHR-Rel-A source schema",
            schema="source",
            subset_id="ehr_rel_a",
        ),
        BigBioConfig(
            name="ehr_rel_b_source",
            version=SOURCE_VERSION,
            description="EHR-Rel-B source schema",
            schema="source",
            subset_id="ehr_rel_b",
        ),
        BigBioConfig(
            name="ehr_rel_bigbio_pairs",
            version=BIGBIO_VERSION,
            description="EHR-Rel BigBio schema",
            schema="bigbio_pairs",
            subset_id="ehr_rel",
        ),
    ]

    DEFAULT_CONFIG_NAME = "ehr_rel_bigbio_pairs"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "document_id": datasets.Value("string"),
                    "snomed_id_1": datasets.Value("string"),
                    "snomed_label_1": datasets.Value("string"),
                    "snomed_id_2": datasets.Value("string"),
                    "snomed_label_2": datasets.Value("string"),
                    "rater_A": datasets.Value("string"),
                    "rater_B": datasets.Value("string"),
                    "rater_C": datasets.Value("string"),
                    "rater_D": datasets.Value("string"),
                    "rater_E": datasets.Value("string"),
                    "mean_rating": datasets.Value("string"),
                    "CUI_1": datasets.Value("string"),
                    "CUI_2": datasets.Value("string"),
                }
            )

        elif self.config.schema == "bigbio_pairs":
            features = pairs_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        urls = _URLS[_DATASETNAME]
        urls = (
            [urls[self.config.subset_id]]
            if self.config.subset_id in urls
            else list(urls.values())
        )
        paths = dl_manager.download(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"paths": paths},
            ),
        ]

    def _generate_examples(self, paths: List[str]) -> Iterator[Tuple[str, Dict]]:

        uid = -1  # want first instance to be 0

        for path in paths:
            document_id = Path(path).stem
            with open(path, encoding="utf-8", newline="") as csv_file:
                csv_reader = csv.reader(csv_file, quotechar='"', delimiter="\t")
                next(csv_reader, None)  # remove column headers
                for id_, row in enumerate(csv_reader):
                    uid += 1
                    (
                        snomed_id_1,
                        snomed_label_1,
                        snomed_id_2,
                        snomed_label_2,
                        rater_A,
                        rater_B,
                        rater_C,
                        rater_D,
                        rater_E,
                        mean_rating,
                        CUI_1,
                        CUI_2,
                    ) = row

                    if self.config.schema == "source":
                        yield uid, {
                            "document_id": document_id,
                            "snomed_id_1": snomed_id_1,
                            "snomed_label_1": snomed_label_1,
                            "snomed_id_2": snomed_id_1,
                            "snomed_label_2": snomed_label_2,
                            "rater_A": rater_A,
                            "rater_B": rater_B,
                            "rater_C": rater_C,
                            "rater_D": rater_D,
                            "rater_E": rater_E,
                            "mean_rating": mean_rating,
                            "CUI_1": CUI_1,
                            "CUI_2": CUI_2,
                        }

                    elif self.config.schema == "bigbio_pairs":
                        yield uid, {
                            "id": uid,
                            "document_id": document_id,
                            "text_1": snomed_label_1,
                            "text_2": snomed_label_2,
                            "label": mean_rating,
                        }