Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
ehr_rel / ehr_rel.py
albertvillanova's picture
Download directly TSV files
83e0cd1 verified
raw
history blame
8.08 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
EHR-Rel is a novel open-source1 biomedical concept relatedness dataset consisting of 3630 concept pairs, six times more
than the largest existing dataset. Instead of manually selecting and pairing concepts as done in previous work,
the dataset is sampled from EHRs to ensure concepts are relevant for the EHR concept retrieval task.
A detailed analysis of the concepts in the dataset reveals a far larger coverage compared to existing datasets.
"""
import csv
from pathlib import Path
from typing import Dict, Iterator, List, Tuple
import datasets
from .bigbiohub import pairs_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ["English"]
_PUBMED = False
_LOCAL = False
_CITATION = """\
@inproceedings{schulz-etal-2020-biomedical,
title = {Biomedical Concept Relatedness {--} A large {EHR}-based benchmark},
author = {Schulz, Claudia and
Levy-Kramer, Josh and
Van Assel, Camille and
Kepes, Miklos and
Hammerla, Nils},
booktitle = {Proceedings of the 28th International Conference on Computational Linguistics},
month = {dec},
year = {2020},
address = {Barcelona, Spain (Online)},
publisher = {International Committee on Computational Linguistics},
url = {https://aclanthology.org/2020.coling-main.577},
doi = {10.18653/v1/2020.coling-main.577},
pages = {6565--6575},
}
"""
_DATASETNAME = "ehr_rel"
_DISPLAYNAME = "EHR-Rel"
_DESCRIPTION = """\
EHR-Rel is a novel open-source1 biomedical concept relatedness dataset consisting of 3630 concept pairs, six times more
than the largest existing dataset. Instead of manually selecting and pairing concepts as done in previous work,
the dataset is sampled from EHRs to ensure concepts are relevant for the EHR concept retrieval task.
A detailed analysis of the concepts in the dataset reveals a far larger coverage compared to existing datasets.
"""
_HOMEPAGE = "https://github.com/babylonhealth/EHR-Rel"
_LICENSE = "Apache License 2.0"
_URLS = {
_DATASETNAME: {
"ehr_rel_a": "https://raw.githubusercontent.com/babylonhealth/EHR-Rel/master/EHR-RelA.tsv",
"ehr_rel_b": "https://raw.githubusercontent.com/babylonhealth/EHR-Rel/master/EHR-RelB.tsv",
},
}
_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class EHRRelDataset(datasets.GeneratorBasedBuilder):
"""Dataset for EHR-Rel Corpus"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="ehr_rel_source",
version=SOURCE_VERSION,
description="EHR-Rel combined source schema",
schema="source",
subset_id="ehr_rel",
),
BigBioConfig(
name="ehr_rel_a_source",
version=SOURCE_VERSION,
description="EHR-Rel-A source schema",
schema="source",
subset_id="ehr_rel_a",
),
BigBioConfig(
name="ehr_rel_b_source",
version=SOURCE_VERSION,
description="EHR-Rel-B source schema",
schema="source",
subset_id="ehr_rel_b",
),
BigBioConfig(
name="ehr_rel_bigbio_pairs",
version=BIGBIO_VERSION,
description="EHR-Rel BigBio schema",
schema="bigbio_pairs",
subset_id="ehr_rel",
),
]
DEFAULT_CONFIG_NAME = "ehr_rel_bigbio_pairs"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"document_id": datasets.Value("string"),
"snomed_id_1": datasets.Value("string"),
"snomed_label_1": datasets.Value("string"),
"snomed_id_2": datasets.Value("string"),
"snomed_label_2": datasets.Value("string"),
"rater_A": datasets.Value("string"),
"rater_B": datasets.Value("string"),
"rater_C": datasets.Value("string"),
"rater_D": datasets.Value("string"),
"rater_E": datasets.Value("string"),
"mean_rating": datasets.Value("string"),
"CUI_1": datasets.Value("string"),
"CUI_2": datasets.Value("string"),
}
)
elif self.config.schema == "bigbio_pairs":
features = pairs_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
urls = (
[urls[self.config.subset_id]]
if self.config.subset_id in urls
else list(urls.values())
)
paths = dl_manager.download(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"paths": paths},
),
]
def _generate_examples(self, paths: List[str]) -> Iterator[Tuple[str, Dict]]:
uid = -1 # want first instance to be 0
for path in paths:
document_id = Path(path).stem
with open(path, encoding="utf-8", newline="") as csv_file:
csv_reader = csv.reader(csv_file, quotechar='"', delimiter="\t")
next(csv_reader, None) # remove column headers
for id_, row in enumerate(csv_reader):
uid += 1
(
snomed_id_1,
snomed_label_1,
snomed_id_2,
snomed_label_2,
rater_A,
rater_B,
rater_C,
rater_D,
rater_E,
mean_rating,
CUI_1,
CUI_2,
) = row
if self.config.schema == "source":
yield uid, {
"document_id": document_id,
"snomed_id_1": snomed_id_1,
"snomed_label_1": snomed_label_1,
"snomed_id_2": snomed_id_1,
"snomed_label_2": snomed_label_2,
"rater_A": rater_A,
"rater_B": rater_B,
"rater_C": rater_C,
"rater_D": rater_D,
"rater_E": rater_E,
"mean_rating": mean_rating,
"CUI_1": CUI_1,
"CUI_2": CUI_2,
}
elif self.config.schema == "bigbio_pairs":
yield uid, {
"id": uid,
"document_id": document_id,
"text_1": snomed_label_1,
"text_2": snomed_label_2,
"label": mean_rating,
}