Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
gabrielaltay commited on
Commit
a791961
·
1 Parent(s): de1c316

upload hub_repos/ehr_rel/README.md to hub from bigbio repo

Browse files
Files changed (1) hide show
  1. README.md +48 -0
README.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ language:
4
+ - en
5
+ license: apache-2.0
6
+ license_bigbio_shortname: APACHE_2p0
7
+ pretty_name: EHR-Rel
8
+ ---
9
+
10
+
11
+ # Dataset Card for EHR-Rel
12
+
13
+ ## Dataset Description
14
+
15
+ - **Homepage:** https://github.com/babylonhealth/EHR-Rel
16
+ - **Pubmed:** False
17
+ - **Public:** True
18
+ - **Tasks:** Semantic Similarity
19
+
20
+
21
+ EHR-Rel is a novel open-source1 biomedical concept relatedness dataset consisting of 3630 concept pairs, six times more
22
+ than the largest existing dataset. Instead of manually selecting and pairing concepts as done in previous work,
23
+ the dataset is sampled from EHRs to ensure concepts are relevant for the EHR concept retrieval task.
24
+ A detailed analysis of the concepts in the dataset reveals a far larger coverage compared to existing datasets.
25
+
26
+
27
+
28
+ ## Citation Information
29
+
30
+ ```
31
+ @inproceedings{schulz-etal-2020-biomedical,
32
+ title = {Biomedical Concept Relatedness {--} A large {EHR}-based benchmark},
33
+ author = {Schulz, Claudia and
34
+ Levy-Kramer, Josh and
35
+ Van Assel, Camille and
36
+ Kepes, Miklos and
37
+ Hammerla, Nils},
38
+ booktitle = {Proceedings of the 28th International Conference on Computational Linguistics},
39
+ month = {dec},
40
+ year = {2020},
41
+ address = {Barcelona, Spain (Online)},
42
+ publisher = {International Committee on Computational Linguistics},
43
+ url = {https://aclanthology.org/2020.coling-main.577},
44
+ doi = {10.18653/v1/2020.coling-main.577},
45
+ pages = {6565--6575},
46
+ }
47
+
48
+ ```