|
import os |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{VANMULLIGEN2012879, |
|
title = {The EU-ADR corpus: Annotated drugs, diseases, targets, and their relationships}, |
|
journal = {Journal of Biomedical Informatics}, |
|
volume = {45}, |
|
number = {5}, |
|
pages = {879-884}, |
|
year = {2012}, |
|
note = {Text Mining and Natural Language Processing in Pharmacogenomics}, |
|
issn = {1532-0464}, |
|
doi = {https://doi.org/10.1016/j.jbi.2012.04.004}, |
|
url = {https://www.sciencedirect.com/science/article/pii/S1532046412000573}, |
|
author = {Erik M. {van Mulligen} and Annie Fourrier-Reglat and David Gurwitz and Mariam Molokhia and Ainhoa Nieto and Gianluca Trifiro and Jan A. Kors and Laura I. Furlong}, |
|
keywords = {Text mining, Corpus development, Machine learning, Adverse drug reactions}, |
|
abstract = {Corpora with specific entities and relationships annotated are essential to train and evaluate text-mining systems that are developed to extract specific structured information from a large corpus. In this paper we describe an approach where a named-entity recognition system produces a first annotation and annotators revise this annotation using a web-based interface. The agreement figures achieved show that the inter-annotator agreement is much better than the agreement with the system provided annotations. The corpus has been annotated for drugs, disorders, genes and their inter-relationships. For each of the drug–disorder, drug–target, and target–disorder relations three experts have annotated a set of 100 abstracts. These annotated relationships will be used to train and evaluate text-mining software to capture these relationships in texts.} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "euadr" |
|
_DISPLAYNAME = "EU-ADR" |
|
|
|
_DESCRIPTION = """\ |
|
Corpora with specific entities and relationships annotated are essential to \ |
|
train and evaluate text-mining systems that are developed to extract specific \ |
|
structured information from a large corpus. In this paper we describe an \ |
|
approach where a named-entity recognition system produces a first annotation and \ |
|
annotators revise this annotation using a web-based interface. The agreement \ |
|
figures achieved show that the inter-annotator agreement is much better than the \ |
|
agreement with the system provided annotations. The corpus has been annotated \ |
|
for drugs, disorders, genes and their inter-relationships. For each of the \ |
|
drug-disorder, drug-target, and target-disorder relations three experts \ |
|
have annotated a set of 100 abstracts. These annotated relationships will be \ |
|
used to train and evaluate text-mining software to capture these relationships \ |
|
in texts. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.sciencedirect.com/science/article/pii/S1532046412000573" |
|
|
|
_LICENSE = 'License information unavailable' |
|
|
|
_URL = "https://biosemantics.erasmusmc.nl/downloads/euadr.tgz" |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION] |
|
|
|
|
|
class EUADR(datasets.GeneratorBasedBuilder): |
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
DEFAULT_CONFIG_NAME = "euadr_bigbio_kb" |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="euadr_source", |
|
version=SOURCE_VERSION, |
|
description="EU-ADR source schema", |
|
schema="source", |
|
subset_id="euadr", |
|
), |
|
BigBioConfig( |
|
name="euadr_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="EU-ADR simplified BigBio schema for named entity recognition and relation extraction", |
|
schema="bigbio_kb", |
|
subset_id="euadr", |
|
), |
|
] |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"pmid": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"abstract": datasets.Value("string"), |
|
"annotations": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URL |
|
datapath = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"datapath": datapath, "dl_manager": dl_manager}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, datapath, dl_manager): |
|
def replace_html_special_chars(string): |
|
|
|
|
|
for (i, r) in [ |
|
(""", '"'), |
|
(""", '"'), |
|
("'", "'"), |
|
("'", "'"), |
|
("&", "&"), |
|
("&", "&"), |
|
("<", "<"), |
|
("<", "<"), |
|
(">", ">"), |
|
(">", ">"), |
|
("'", "'"), |
|
]: |
|
string = string.replace(i, r) |
|
return string |
|
|
|
def suppr_blank(l_str): |
|
r = [] |
|
for string in l_str: |
|
if len(string) > 0: |
|
r.append(string) |
|
return r |
|
|
|
folder_path = os.path.join(datapath, "euadr_corpus") |
|
key = 0 |
|
if self.config.schema == "source": |
|
for filename in sorted(os.listdir(folder_path)): |
|
if "_" not in filename: |
|
corpus_path = dl_manager.download_and_extract( |
|
f"https://pubmed.ncbi.nlm.nih.gov/{filename[:-4]}/?format=pubmed" |
|
) |
|
with open(corpus_path, "r", encoding="latin") as f: |
|
full_html = replace_html_special_chars( |
|
("".join(f.readlines())) |
|
.replace("\r\n", "") |
|
.replace("\n", "") |
|
) |
|
abstract = " ".join( |
|
suppr_blank( |
|
full_html.split("AB -")[-1] |
|
.split("FAU -")[0] |
|
.split(" ") |
|
) |
|
) |
|
title = " ".join( |
|
suppr_blank( |
|
full_html.split("TI -")[-1].split("PG")[0].split(" ") |
|
) |
|
) |
|
full_text = " ".join([title, abstract]) |
|
with open( |
|
os.path.join(folder_path, filename), "r", encoding="latin" |
|
) as f: |
|
lines = f.readlines() |
|
yield key, { |
|
"pmid": filename[:-4], |
|
"title": title, |
|
"abstract": abstract, |
|
"annotations": lines, |
|
} |
|
key += 1 |
|
elif self.config.schema == "bigbio_kb": |
|
for filename in sorted(os.listdir(folder_path)): |
|
if "_" not in filename: |
|
corpus_path = dl_manager.download_and_extract( |
|
f"https://pubmed.ncbi.nlm.nih.gov/{filename[:-4]}/?format=pubmed" |
|
) |
|
with open(corpus_path, "r", encoding="latin") as f: |
|
full_html = replace_html_special_chars( |
|
("".join(f.readlines())) |
|
.replace("\r\n", "") |
|
.replace("\n", "") |
|
) |
|
abstract = " ".join( |
|
suppr_blank( |
|
full_html.split("AB -")[-1] |
|
.split("FAU -")[0] |
|
.split(" ") |
|
) |
|
) |
|
title = " ".join( |
|
suppr_blank( |
|
full_html.split("TI -")[-1].split("PG")[0].split(" ") |
|
) |
|
) |
|
full_text = " ".join([title, abstract]) |
|
with open( |
|
os.path.join(folder_path, filename), "r", encoding="latin" |
|
) as f: |
|
lines = f.readlines() |
|
data = { |
|
"id": str(key), |
|
"document_id": str(key), |
|
"passages": [], |
|
"entities": [], |
|
"events": [], |
|
"coreferences": [], |
|
"relations": [], |
|
} |
|
key += 1 |
|
data["passages"].append( |
|
{ |
|
"id": str(key), |
|
"type": "title", |
|
"text": [title], |
|
"offsets": [[0, len(title)]], |
|
} |
|
) |
|
key += 1 |
|
data["passages"].append( |
|
{ |
|
"id": str(key), |
|
"type": "abstract", |
|
"text": [abstract], |
|
"offsets": [ |
|
[len(title) + 1, len(title) + 1 + len(abstract)] |
|
], |
|
} |
|
) |
|
key += 1 |
|
for line in lines: |
|
line_processed = line.split("\t") |
|
if line_processed[2] == "relation": |
|
data["entities"].append( |
|
{ |
|
"id": str(key), |
|
"offsets": [ |
|
[ |
|
int(line_processed[7].split(":")[0]), |
|
int(line_processed[7].split(":")[1]), |
|
] |
|
], |
|
"text": [ |
|
full_text[ |
|
int( |
|
line_processed[7].split(":")[0] |
|
) : int(line_processed[7].split(":")[1]) |
|
] |
|
], |
|
"type": "", |
|
"normalized": [], |
|
} |
|
) |
|
key += 1 |
|
data["entities"].append( |
|
{ |
|
"id": str(key), |
|
"offsets": [ |
|
[ |
|
int(line_processed[8].split(":")[0]), |
|
int(line_processed[8].split(":")[1]), |
|
] |
|
], |
|
"text": [ |
|
full_text[ |
|
int( |
|
line_processed[8].split(":")[0] |
|
) : int(line_processed[8].split(":")[1]) |
|
] |
|
], |
|
"type": "", |
|
"normalized": [], |
|
} |
|
) |
|
key += 1 |
|
data["relations"].append( |
|
{ |
|
"id": str(key), |
|
"type": line_processed[-1].split("\n")[0], |
|
"arg1_id": str(key - 2), |
|
"arg2_id": str(key - 1), |
|
"normalized": [], |
|
} |
|
) |
|
key += 1 |
|
elif line_processed[2] == "concept": |
|
data["entities"].append( |
|
{ |
|
"id": str(key), |
|
"offsets": [ |
|
[ |
|
int(line_processed[4]), |
|
int(line_processed[5]), |
|
] |
|
], |
|
"text": [ |
|
full_text[ |
|
int(line_processed[4]) : int( |
|
line_processed[5] |
|
) |
|
] |
|
], |
|
"type": line_processed[-1].split("\n")[0], |
|
"normalized": [], |
|
} |
|
) |
|
key += 1 |
|
yield key, data |
|
key += 1 |
|
|