File size: 9,043 Bytes
103e6fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
GraSCCo is a collection of artificially generated semi-structured and unstructured German-language clinical summaries.
These summaries are formulated as letters from the hospital to the patient's GP after in-patient or out-patient care.
This is common practice in Germany, Austria and Switzerland.
The creation of the GraSCCo documents were inspired by existing clinical texts,
but all names and dates are purely fictional.
There is no relation to existing patients, clinicians or institutions.
Whereas the texts try to represent the range of German clinical language as best as possible,
medical plausibility must not be assumed.
GraSCCo can therefore only be used to train clinical language models, not clinical domain models.
"""
import json
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from .bigbiohub import BigBioConfig, Tasks, kb_features, logger
_LOCAL = False
_CITATION = """\
@incollection{modersohn2022grascco,
title={GRASCCO—The First Publicly Shareable, Multiply-Alienated German Clinical Text Corpus},
author={Modersohn, Luise and Schulz, Stefan and Lohr, Christina and Hahn, Udo},
booktitle={German Medical Data Sciences 2022--Future Medicine: More Precise, More Integrative, More Sustainable!},
pages={66--72},
year={2022},
publisher={IOS Press}
}
"""
_DATASETNAME = "grascco"
_DISPLAYNAME = "GraSCCo"
_DESCRIPTION = """\
GraSCCo is a collection of artificially generated semi-structured and unstructured German-language clinical summaries.
These summaries are formulated as letters from the hospital to the patient's GP after in-patient or out-patient care.
This is common practice in Germany, Austria and Switzerland.
The creation of the GraSCCo documents were inspired by existing clinical texts,
but all names and dates are purely fictional.
There is no relation to existing patients, clinicians or institutions.
Whereas the texts try to represent the range of German clinical language as best as possible,
medical plausibility must not be assumed.
GraSCCo can therefore only be used to train clinical language models, not clinical domain models.
"""
_HOMEPAGE = "https://zenodo.org/records/6539131"
_LICENSE = "CC_BY_4p0"
_LANGUAGES = ["German"]
_PUBMED = False
_URLS = {
_DATASETNAME: {
"phi": "https://zenodo.org/records/11502329/files/grascco_phi_annotation_json.zip?download=1",
},
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
_UIMA_FEATURES_KEY = "%FEATURE_STRUCTURES"
class GraSCCoDataset(datasets.GeneratorBasedBuilder):
"""Dataloader for GraSCCo dataset with different annotation layers (PHI, SNOMED CT, etc.)"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="grascco_phi_source",
version=SOURCE_VERSION,
description="GraSCCo (PHI) source schema",
schema="source",
subset_id="phi",
),
BigBioConfig(
name="grascco_phi_bigbio_kb",
version=BIGBIO_VERSION,
description="GraSCCo (PHI) BigBio schema",
schema="bigbio_kb",
subset_id="phi",
),
]
DEFAULT_CONFIG_NAME = "grascco_phi_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"document_id": datasets.Value("string"),
_UIMA_FEATURES_KEY: [
{
"%ID": datasets.Value("int64"),
"%TYPE": datasets.Value("string"),
"@sofa": datasets.Value("int64"),
"@layer": datasets.Value("int64"),
"begin": datasets.Value("int64"),
"end": datasets.Value("int64"),
"name": datasets.Value("string"),
"uiName": datasets.Value("string"),
"documentTitle": datasets.Value("string"),
"sofaString": datasets.Value("string"),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME][self.config.subset_id]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# Whatever you put in gen_kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": Path(data_dir) / "grascco_phi_annotation_json",
},
),
]
def _parse_uima_cas_json(self, filename) -> Dict:
"""Parse UIMA CAS JSON file and return parsed elements as well as the raw data"""
with open(filename, "r", encoding="utf-8") as f:
uima_features = json.load(f)[_UIMA_FEATURES_KEY]
phi_elements = []
for feature in uima_features:
if feature["%TYPE"] == "webanno.custom.PHI":
phi_elements.append(feature)
if feature["%TYPE"] == "de.tudarmstadt.ukp.dkpro.core.api.metadata.type.DocumentMetaData":
document_title = feature["documentTitle"]
if feature["%TYPE"] == "uima.cas.Sofa":
document_text = feature["sofaString"]
return {
"phi_elements": phi_elements,
"document_title": document_title,
"document_text": document_text,
"uima_features": uima_features,
}
def _generate_examples(self, filepath) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
for file_id, file in enumerate(sorted(filepath.glob("*.json"))):
uima_parsed = self._parse_uima_cas_json(file)
doc_id = uima_parsed["document_title"]
if self.config.schema == "source":
yield doc_id, {"document_id": doc_id, _UIMA_FEATURES_KEY: uima_parsed["uima_features"]}
elif self.config.schema == "bigbio_kb":
text = uima_parsed["document_text"]
relations = []
entities = []
# Just as single passage; ignoring sentence boundaries from annotation tool, as these are not reliable
passages = [{"id": f"{file_id}-0", "type": "document", "text": [text], "offsets": [[0, len(text)]]}]
# Other subsets / annotation layers will be added in future GraSCCo releases
if self.config.subset_id == "phi":
for phi in sorted(uima_parsed["phi_elements"], key=lambda p: p["begin"]):
e_start = phi["begin"]
e_end = phi["end"]
eid = phi["%ID"]
if "kind" not in phi:
logger.warning(
f"'kind' attribute missing in PHI element with ID {eid} in document {doc_id}"
)
continue
entities.append(
{
"id": f"{file_id}-{eid}",
"type": phi["kind"],
"text": [text[e_start:e_end]],
"offsets": [[e_start, e_end]],
"normalized": [],
}
)
yield doc_id, {
"id": file_id,
"document_id": doc_id,
"passages": passages,
"entities": entities,
"events": [],
"coreferences": [],
"relations": relations,
}
|