File size: 26,516 Bytes
18349d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and
#
# * Ayush Singh (singhay)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A dataset loader for the n2c2 2009 medication dataset.
The dataset consists of three archive files,
├── annotations_ground_truth.tar.gz
├── train.test.released.8.17.09.tar.gz
├── TeamSubmissions.zip
└── training.sets.released.tar.gz
The individual data files (inside the zip and tar archives) come in 4 types,
* entries (*.entries / no extension files): text of a patient record
* medications (*.m files): entities along with offsets used as input to a named entity recognition model
The files comprising this dataset must be on the users local machine
in a single directory that is passed to `datasets.load_dataset` via
the `data_dir` kwarg. This loader script will read the archive files
directly (i.e. the user should not uncompress, untar or unzip any of
the files).
Data Access from https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
Steps taken to build datasets:
1. Read all data files from train.test.released.8.17.09
2. Get IDs of all train files from training.sets.released
3. Intersect 2 with 1 to get train set
4. Difference 1 with 2 to get test set
5. Enrich train set with training.ground.truth.01.06.11.2009
6. Enrich test set with annotations_ground_truth
"""
import os
import re
import tarfile
import zipfile
from collections import defaultdict
from typing import Dict, List, Match, Tuple, Union
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = True
_CITATION = """\
@article{DBLP:journals/jamia/UzunerSC10,
author = {
Ozlem Uzuner and
Imre Solti and
Eithon Cadag
},
title = {Extracting medication information from clinical text},
journal = {J. Am. Medical Informatics Assoc.},
volume = {17},
number = {5},
pages = {514--518},
year = {2010},
url = {https://doi.org/10.1136/jamia.2010.003947},
doi = {10.1136/jamia.2010.003947},
timestamp = {Mon, 11 May 2020 22:59:55 +0200},
biburl = {https://dblp.org/rec/journals/jamia/UzunerSC10.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DATASETNAME = "n2c2_2009"
_DISPLAYNAME = "n2c2 2009 Medications"
_DESCRIPTION = """\
The Third i2b2 Workshop on Natural Language Processing Challenges for Clinical Records
focused on the identification of medications, their dosages, modes (routes) of administration,
frequencies, durations, and reasons for administration in discharge summaries.
The third i2b2 challenge—that is, the medication challenge—extends information
extraction to relation extraction; it requires extraction of medications and
medication-related information followed by determination of which medication
belongs to which medication-related details.
The medication challenge was designed as an information extraction task.
The goal, for each discharge summary, was to extract the following information
on medications experienced by the patient:
1. Medications (m): including names, brand names, generics, and collective names of prescription substances,
over the counter medications, and other biological substances for which the patient is the experiencer.
2. Dosages (do): indicating the amount of a medication used in each administration.
3. Modes (mo): indicating the route for administering the medication.
4. Frequencies (f): indicating how often each dose of the medication should be taken.
5. Durations (du): indicating how long the medication is to be administered.
6. Reasons (r): stating the medical reason for which the medication is given.
7. Certainty (c): stating whether the event occurs. Certainty can be expressed by uncertainty words,
e.g., “suggested”, or via modals, e.g., “should” indicates suggestion.
8. Event (e): stating on whether the medication is started, stopped, or continued.
9. Temporal (t): stating whether the medication was administered in the past,
is being administered currently, or will be administered in the future, to the extent
that this information is expressed in the tense of the verbs and auxiliary verbs used to express events.
10. List/narrative (ln): indicating whether the medication information appears in a
list structure or in narrative running text in the discharge summary.
The medication challenge asked that systems extract the text corresponding to each of the fields
for each of the mentions of the medications that were experienced by the patients.
The values for the set of fields related to a medication mention, if presented within a
two-line window of the mention, were linked in order to create what we defined as an ‘entry’.
If the value of a field for a mention were not specified within a two-line window,
then the value ‘nm’ for ‘not mentioned’ was entered and the offsets were left unspecified.
Since the dataset annotations were crowd-sourced, it contains various violations that are handled
throughout the data loader via means of exception catching or conditional statements. e.g.
annotation: anticoagulation, while in text all words are to be separated by space which
means words at end of sentence will always contain `.` and hence won't be an exact match
i.e. `anticoagulation` != `anticoagulation.` from doc_id: 818404
"""
_HOMEPAGE = "https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/"
_LICENSE = 'Data User Agreement'
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0" # 18-Aug-2009
_BIGBIO_VERSION = "1.0.0"
DELIMITER = "||"
SOURCE = "source"
BIGBIO_KB = "bigbio_kb"
TEXT_DATA_FIELDNAME = "txt"
MEDICATIONS_DATA_FIELDNAME = "med"
OFFSET_PATTERN = (
r"(.+?)=\"(.+?)\"( .+)?" # captures -> do="500" 102:6 102:6 and mo="nm"
)
BINARY_PATTERN = r"(.+?)=\"(.+?)\""
ENTITY_ID = "entity_id"
MEDICATION = "m"
DOSAGE = "do"
MODE_OF_ADMIN = "mo"
FREQUENCY = "f"
DURATION = "du"
REASON = "r"
EVENT = "e"
TEMPORAL = "t"
CERTAINTY = "c"
IS_FOUND_IN_LIST_OR_NARRATIVE = "ln"
NOT_MENTIONED = "nm"
def _read_train_test_data_from_tar_gz(data_dir):
samples = defaultdict(dict)
with tarfile.open(
os.path.join(data_dir, "train.test.released.8.17.09.tar.gz"), "r:gz"
) as tf:
for member in tf.getmembers():
if member.name != "train.test.released.8.17.09":
_, sample_id = os.path.split(member.name)
with tf.extractfile(member) as fp:
content_bytes = fp.read()
content = content_bytes.decode("utf-8")
samples[sample_id][TEXT_DATA_FIELDNAME] = content
return samples
def _get_train_set(data_dir, train_test_set):
train_sample_ids = set()
# Read training set IDs
with tarfile.open(
os.path.join(data_dir, "training.sets.released.tar.gz"), "r:gz"
) as tf:
for member in tf.getmembers():
if member.name not in list(map(str, range(1, 11))):
_, sample_id = os.path.split(member.name)
train_sample_ids.add(sample_id)
# Extract training set samples using above IDs from combined dataset
training_set = {}
for sample_id in train_sample_ids:
training_set[sample_id] = train_test_set[sample_id]
return training_set
def _get_test_set(train_set, train_test_set):
test_set = {}
for sample_id, sample in train_test_set.items():
if sample_id not in train_set:
test_set[sample_id] = sample
return test_set
def _add_entities_to_train_set(data_dir, train_set):
with zipfile.ZipFile(
os.path.join(data_dir, "training.ground.truth.01.06.11.2009.zip")
) as zf:
for info in zf.infolist():
base, filename = os.path.split(info.filename)
_, ext = os.path.splitext(filename)
ext = ext[1:] # get rid of dot
# Extract sample id from filename pattern `379569_gold.entries`
sample_id = filename.split(".")[0].split("_")[0]
if ext == "entries":
train_set[sample_id][MEDICATIONS_DATA_FIELDNAME] = zf.read(info).decode(
"utf-8"
)
def _add_entities_to_test_set(data_dir, test_set):
with tarfile.open(
os.path.join(data_dir, "annotations_ground_truth.tar.gz"), "r:gz"
) as tf:
for member in tf.getmembers():
if "converted.noduplicates.sorted" in member.name:
base, filename = os.path.split(member.name)
_, ext = os.path.splitext(filename)
ext = ext[1:] # get rid of dot
sample_id = filename.split(".")[0]
if ext == "m":
with tf.extractfile(member) as fp:
content_bytes = fp.read()
test_set[sample_id][
MEDICATIONS_DATA_FIELDNAME
] = content_bytes.decode("utf-8")
def _make_empty_schema_dict_with_text(text):
return {
"text": text,
"offsets": [{"start_line": 0, "start_token": 0, "end_line": 0, "end_token": 0}],
}
def _ct_match_to_dict(c_match: Match) -> dict:
"""Return a dictionary with groups from concept and type regex matches."""
key = c_match.group(1)
text = c_match.group(2)
offsets = c_match.group(3)
if offsets:
offsets = offsets.strip()
offsets_formatted = []
# Pattern: f="monday-wednesday-friday...before hemodialysis...p.r.n." 15:7 15:7,16:0 16:1,16:5 16:5
if "," in offsets:
line_offsets = offsets.split(",")
for offset in line_offsets:
start, end = offset.split(" ")
start_line, start_token = start.split(":")
end_line, end_token = end.split(":")
offsets_formatted.append(
{
"start_line": int(start_line),
"start_token": int(start_token),
"end_line": int(end_line),
"end_token": int(end_token),
}
)
else:
"""Handle another edge annotations.ground.truth>984424 which has discontinuous
annotation as 23:4 23:4 23:10 23:10 which violates annotation guideline that
discontinuous spans should be separated by comma -> 23:4 23:4,23:10 23:10
"""
offset = offsets.split(" ")
for i in range(0, len(offset), 2):
start, end = offset[i : i + 2]
start_line, start_token = start.split(":")
end_line, end_token = end.split(":")
offsets_formatted.append(
{
"start_line": int(start_line),
"start_token": int(start_token),
"end_line": int(end_line),
"end_token": int(end_token),
}
)
return {"text": text, "offsets": offsets_formatted}
elif key in {CERTAINTY, EVENT, TEMPORAL, IS_FOUND_IN_LIST_OR_NARRATIVE}:
return text
else:
return _make_empty_schema_dict_with_text(text)
def _tokoff_from_line(text: str) -> List[Tuple[int, int]]:
"""Produce character offsets for each token (whitespace split)
For example,
text = " one two three ."
tokoff = [(1,4), (6,9), (10,15), (16,17)]
"""
tokoff = []
start = None
end = None
for ii, char in enumerate(text):
if (char != " " or char != "\t") and start is None:
start = ii
if (char == " " or char == "\t") and start is not None:
end = ii
tokoff.append((start, end))
start = None
if start is not None:
end = ii + 1
tokoff.append((start, end))
return tokoff
def _parse_line(line: str) -> dict:
"""Parse one line from a *.m file.
A typical line has the form,
'm="<string>" <start_line>:<start_token> <end_line>:<end_token>||...||e="<string>"||...'
This represents one medication.
It can be interpreted as follows,
Medication name & offset||dosage & offset||mode & offset||frequency & offset||...
...duration & offset||reason & offset||event||temporal marker||certainty||list/narrative
If there is no information then each field will simply contain "nm" (not mentioned)
Anomalies:
1. Files 683679 and 974209 annotations do not have 'c', 'e', 't' keys in them
2. Some files have discontinuous annotations violating guidelines i.e. using space insead of comma as delimiter
"""
entity = {
MEDICATION: _make_empty_schema_dict_with_text(""),
DOSAGE: _make_empty_schema_dict_with_text(""),
MODE_OF_ADMIN: _make_empty_schema_dict_with_text(""),
FREQUENCY: _make_empty_schema_dict_with_text(""),
DURATION: _make_empty_schema_dict_with_text(""),
REASON: _make_empty_schema_dict_with_text(""),
EVENT: "",
TEMPORAL: "",
CERTAINTY: "",
IS_FOUND_IN_LIST_OR_NARRATIVE: "",
}
for i, pattern in enumerate(line.split(DELIMITER)):
# Handle edge case of triple pipe as delimiter in 18563_gold.entries: ...7,16:0 16:1,16:5 16:5||| du="nm"...
if pattern[0] == "|":
pattern = pattern[1:]
pattern = pattern.strip()
match = re.match(OFFSET_PATTERN, pattern)
key = match.group(1)
entity[key] = _ct_match_to_dict(match)
return entity
def _form_entity_id(sample_id, split, start_line, start_token, end_line, end_token):
return "{}-entity-{}-{}-{}-{}-{}".format(
sample_id,
split,
start_line,
start_token,
end_line,
end_token,
)
def _get_entities_from_sample(sample_id, sample, split):
entities = []
if MEDICATIONS_DATA_FIELDNAME not in sample:
return entities
text = sample[TEXT_DATA_FIELDNAME]
text_lines = text.splitlines()
text_line_lengths = [len(el) for el in text_lines]
med_lines = sample[MEDICATIONS_DATA_FIELDNAME].splitlines()
# parsed concepts (sort is just a convenience)
med_parsed = sorted(
[_parse_line(line) for line in med_lines],
key=lambda x: (
x[MEDICATION]["offsets"][0]["start_line"],
x[MEDICATION]["offsets"][0]["start_token"],
),
)
for ii_cp, cp in enumerate(med_parsed):
for entity_type in {
MEDICATION,
DOSAGE,
DURATION,
REASON,
FREQUENCY,
MODE_OF_ADMIN,
}:
offsets, texts = [], []
for txt, offset in zip(
cp[entity_type]["text"].split("..."), cp[entity_type]["offsets"]
):
# annotations can span multiple lines
# we loop over all lines and build up the character offsets
for ii_line in range(offset["start_line"], offset["end_line"] + 1):
# character offset to the beginning of the line
# line length of each line + 1 new line character for each line
# need to subtract 1 from offset["start_line"] because line index starts at 1 in dataset
start_line_off = sum(text_line_lengths[: ii_line - 1]) + (
ii_line - 1
)
# offsets for each token relative to the beginning of the line
# "one two" -> [(0,3), (4,6)]
tokoff = _tokoff_from_line(text_lines[ii_line - 1])
try:
# if this is a single line annotation
if ii_line == offset["start_line"] == offset["end_line"]:
start_off = (
start_line_off + tokoff[offset["start_token"]][0]
)
end_off = start_line_off + tokoff[offset["end_token"]][1]
# if multi-line and on first line
# end_off gets a +1 for new line character
elif (ii_line == offset["start_line"]) and (
ii_line != offset["end_line"]
):
start_off = (
start_line_off + tokoff[offset["start_token"]][0]
)
end_off = (
start_line_off + text_line_lengths[ii_line - 1] + 1
)
# if multi-line and on last line
elif (ii_line != offset["start_line"]) and (
ii_line == offset["end_line"]
):
end_off += tokoff[offset["end_token"]][1]
# if mult-line and not on first or last line
# (this does not seem to occur in this corpus)
else:
end_off += text_line_lengths[ii_line - 1] + 1
except IndexError:
"""This is to handle an erroneous annotation in files #974209 line 51
line is 'the PACU in stable condition. Her pain was well controlled with PCA'
whereas the annotation says 'pca analgesia' where 'analgesia' is missing from
the end of the line. This results in token not being found in `tokoff` array
and raises IndexError
similar files:
* 5091 - amputation beginning two weeks ago associated with throbbing
* 944118 - dysuria , joint pain. Reported small rash on penis for which was taking
* 918321 - endarterectomy. The patient was started on enteric coated aspirin
"""
continue
offsets.append((start_off, end_off))
text_slice = text[start_off:end_off]
text_slice_norm_1 = text_slice.replace("\n", "").lower()
text_slice_norm_2 = text_slice.replace("\n", " ").lower()
text_slice_norm_3 = text_slice.replace(".", "").lower()
match = (
text_slice_norm_1 == txt.lower()
or text_slice_norm_2 == txt.lower()
or text_slice_norm_3 == txt.lower()
)
if not match:
continue
texts.append(text_slice)
entity_id = _form_entity_id(
sample_id,
split,
cp[entity_type]["offsets"][0]["start_line"],
cp[entity_type]["offsets"][0]["start_token"],
cp[entity_type]["offsets"][-1]["end_line"],
cp[entity_type]["offsets"][-1]["end_token"],
)
entity = {
"id": entity_id,
"offsets": offsets if texts else [],
"text": texts,
"type": entity_type,
"normalized": [],
}
entities.append(entity)
# IDs are constructed such that duplicate IDs indicate duplicate (i.e. redundant) entities
dedupe_entities = []
dedupe_entity_ids = set()
for entity in entities:
if entity["id"] in dedupe_entity_ids:
continue
else:
dedupe_entity_ids.add(entity["id"])
dedupe_entities.append(entity)
return dedupe_entities
class N2C22009MedicationDataset(datasets.GeneratorBasedBuilder):
"""n2c2 2009 Medications NER task"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
SOURCE_CONFIG_NAME = _DATASETNAME + "_" + SOURCE
BIGBIO_CONFIG_NAME = _DATASETNAME + "_" + BIGBIO_KB
# You will be able to load the "source" or "bigbio" configurations with
# ds_source = datasets.load_dataset('my_dataset', name='source')
# ds_bigbio = datasets.load_dataset('my_dataset', name='bigbio')
# For local datasets you can make use of the `data_dir` and `data_files` kwargs
# https://huggingface.co/docs/datasets/add_dataset.html#downloading-data-files-and-organizing-splits
# ds_source = datasets.load_dataset('my_dataset', name='source', data_dir="/path/to/data/files")
# ds_bigbio = datasets.load_dataset('my_dataset', name='bigbio', data_dir="/path/to/data/files")
BUILDER_CONFIGS = [
BigBioConfig(
name=SOURCE_CONFIG_NAME,
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema=SOURCE,
subset_id=_DATASETNAME,
),
BigBioConfig(
name=BIGBIO_CONFIG_NAME,
version=BIGBIO_VERSION,
description=f"{_DATASETNAME} BigBio schema",
schema=BIGBIO_KB,
subset_id=_DATASETNAME,
),
]
DEFAULT_CONFIG_NAME = SOURCE_CONFIG_NAME
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == SOURCE:
offset_text_schema = {
"text": datasets.Value("string"),
"offsets": [
{
"start_line": datasets.Value("int64"),
"start_token": datasets.Value("int64"),
"end_line": datasets.Value("int64"),
"end_token": datasets.Value("int64"),
}
],
}
features = datasets.Features(
{
"doc_id": datasets.Value("string"),
"text": datasets.Value("string"),
"entities": [
{
MEDICATION: offset_text_schema,
DOSAGE: offset_text_schema,
MODE_OF_ADMIN: offset_text_schema,
FREQUENCY: offset_text_schema,
DURATION: offset_text_schema,
REASON: offset_text_schema,
EVENT: datasets.Value("string"),
TEMPORAL: datasets.Value("string"),
CERTAINTY: datasets.Value("string"),
IS_FOUND_IN_LIST_OR_NARRATIVE: datasets.Value("string"),
}
],
}
)
elif self.config.schema == BIGBIO_KB:
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
if self.config.data_dir is None or self.config.name is None:
raise ValueError(
"This is a local dataset. Please pass the data_dir and name kwarg to load_dataset."
)
else:
data_dir = self.config.data_dir
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_dir": data_dir,
"split": str(datasets.Split.TRAIN),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_dir": data_dir,
"split": str(datasets.Split.TEST),
},
),
]
@staticmethod
def _get_source_sample(
sample_id, sample
) -> Dict[str, Union[str, List[Dict[str, str]]]]:
entities = []
if MEDICATIONS_DATA_FIELDNAME in sample:
entities = list(
map(_parse_line, sample[MEDICATIONS_DATA_FIELDNAME].splitlines())
)
return {
"doc_id": sample_id,
"text": sample.get(TEXT_DATA_FIELDNAME, ""),
"entities": entities,
}
@staticmethod
def _get_bigbio_sample(
sample_id, sample, split
) -> Dict[str, Union[str, List[Dict[str, Union[str, List[Tuple]]]]]]:
passage_text = sample.get(TEXT_DATA_FIELDNAME, "")
entities = _get_entities_from_sample(sample_id, sample, split)
return {
"id": sample_id,
"document_id": sample_id,
"passages": [
{
"id": f"{sample_id}-passage-0",
"type": "discharge summary",
"text": [passage_text],
"offsets": [(0, len(passage_text))],
}
],
"entities": entities,
"relations": [],
"events": [],
"coreferences": [],
}
def _generate_examples(self, data_dir, split):
train_test_set = _read_train_test_data_from_tar_gz(data_dir)
train_set = _get_train_set(data_dir, train_test_set)
test_set = _get_test_set(train_set, train_test_set)
if split == "train":
_add_entities_to_train_set(data_dir, train_set)
samples = train_set
elif split == "test":
_add_entities_to_test_set(data_dir, test_set)
samples = test_set
_id = 0
for sample_id, sample in samples.items():
if self.config.name == N2C22009MedicationDataset.SOURCE_CONFIG_NAME:
yield _id, self._get_source_sample(sample_id, sample)
elif self.config.name == N2C22009MedicationDataset.BIGBIO_CONFIG_NAME:
yield _id, self._get_bigbio_sample(sample_id, sample, split)
_id += 1
|