|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
A dataset loader for the SciCite dataset. |
|
|
|
SciCite is a dataset of 11K manually annotated citation intents based on |
|
citation context in the computer science and biomedical domains. |
|
|
|
Some of the code in this module is based on the corresponding module in the |
|
datasets library. |
|
https://github.com/huggingface/datasets/blob/master/datasets/scicite/scicite.py |
|
|
|
In the source schema, we follow the datasets implementation and replace |
|
missing values. |
|
TODO: Use standard BigBio missing values. |
|
""" |
|
|
|
import json |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import numpy as np |
|
|
|
from .bigbiohub import text_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = False |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{cohan:naacl19, |
|
author = {Arman Cohan and Waleed Ammar and Madeleine van Zuylen and Field Cady}, |
|
title = {Structural Scaffolds for Citation Intent Classification in Scientific Publications}, |
|
booktitle = {Conference of the North American Chapter of the Association for Computational Linguistics}, |
|
year = {2019}, |
|
url = {https://aclanthology.org/N19-1361/}, |
|
doi = {10.18653/v1/N19-1361}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "scicite" |
|
_DISPLAYNAME = "SciCite" |
|
|
|
_DESCRIPTION = """\ |
|
SciCite is a dataset of 11K manually annotated citation intents based on |
|
citation context in the computer science and biomedical domains. |
|
""" |
|
|
|
_HOMEPAGE = "https://allenai.org/data/scicite" |
|
|
|
_LICENSE = 'License information unavailable' |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://s3-us-west-2.amazonaws.com/ai2-s2-research/scicite/scicite.tar.gz", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class SciciteDataset(datasets.GeneratorBasedBuilder): |
|
"""SciCite is a dataset of 11K manually annotated citation intents based on |
|
citation context in the computer science and biomedical domains.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="scicite_source", |
|
version=SOURCE_VERSION, |
|
description="SciCite source schema", |
|
schema="source", |
|
subset_id="scicite", |
|
), |
|
BigBioConfig( |
|
name="scicite_bigbio_text", |
|
version=BIGBIO_VERSION, |
|
description="SciCite BigBio schema", |
|
schema="bigbio_text", |
|
subset_id="scicite", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "scicite_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"source": datasets.Value("string"), |
|
"citeStart": datasets.Value("int64"), |
|
"sectionName": datasets.Value("string"), |
|
"string": datasets.Value("string"), |
|
"citeEnd": datasets.Value("int64"), |
|
"label": datasets.features.ClassLabel( |
|
names=["method", "background", "result"] |
|
), |
|
"label_confidence": datasets.Value("float"), |
|
"label2": datasets.features.ClassLabel( |
|
names=["supportive", "not_supportive", "cant_determine", "none"] |
|
), |
|
"label2_confidence": datasets.Value("float"), |
|
"citingPaperId": datasets.Value("string"), |
|
"citedPaperId": datasets.Value("string"), |
|
"isKeyCitation": datasets.Value("bool"), |
|
"id": datasets.Value("string"), |
|
"unique_id": datasets.Value("string"), |
|
"excerpt_index": datasets.Value("int64"), |
|
} |
|
) |
|
elif self.config.schema == "bigbio_text": |
|
features = text_features |
|
else: |
|
raise ValueError("Unrecognized schema: %s" % self.config.schema) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"archive": dl_manager.iter_archive(data_dir), |
|
"filepath": "scicite/train.jsonl", |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"archive": dl_manager.iter_archive(data_dir), |
|
"filepath": "scicite/test.jsonl", |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"archive": dl_manager.iter_archive(data_dir), |
|
"filepath": "scicite/dev.jsonl", |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, archive, filepath, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
for path, file in archive: |
|
if path == filepath: |
|
examples = [json.loads(line) for line in file] |
|
break |
|
|
|
|
|
keys = set() |
|
for example in examples: |
|
|
|
if example["unique_id"] in keys: |
|
example["unique_id"] = example["unique_id"] + "_duplicate" |
|
else: |
|
keys.add(example["unique_id"]) |
|
|
|
if self.config.schema == "source": |
|
for example in examples: |
|
yield str(example["unique_id"]), { |
|
"string": example["string"], |
|
"label": str(example["label"]), |
|
"sectionName": str(example["sectionName"]), |
|
"citingPaperId": str(example["citingPaperId"]), |
|
"citedPaperId": str(example["citedPaperId"]), |
|
"excerpt_index": int(example["excerpt_index"]), |
|
"isKeyCitation": bool(example["isKeyCitation"]), |
|
"label2": str(example.get("label2", "none")), |
|
"citeEnd": _safe_int(example["citeEnd"]), |
|
"citeStart": _safe_int(example["citeStart"]), |
|
"source": str(example["source"]), |
|
"label_confidence": float( |
|
example.get("label_confidence", np.nan) |
|
), |
|
"label2_confidence": float( |
|
example.get("label2_confidence", np.nan) |
|
), |
|
"id": str(example["id"]), |
|
"unique_id": str(example["unique_id"]), |
|
} |
|
|
|
elif self.config.schema == "bigbio_text": |
|
for example in examples: |
|
if "label2" in example: |
|
labels = [example["label"], example["label2"]] |
|
else: |
|
labels = [example["label"]] |
|
|
|
yield str(example["unique_id"]), { |
|
"id": example["unique_id"], |
|
"document_id": example["citingPaperId"], |
|
"text": example["string"], |
|
"labels": labels, |
|
} |
|
|
|
|
|
def _safe_int(a): |
|
try: |
|
|
|
return int(a) |
|
except ValueError: |
|
return -1 |
|
|