Datasets:
License:
File size: 8,075 Bytes
8f06c11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Parallel corpus of full-text articles in Portuguese, English and Spanish from SciELO.
"""
from typing import IO, Any, Generator, List, Optional, Tuple
import datasets
from .bigbiohub import text2text_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English', 'Spanish', 'Portuguese']
_PUBMED = False
_LOCAL = False
_CITATION = """\
@inproceedings{soares2018large,
title = {A Large Parallel Corpus of Full-Text Scientific Articles},
author = {Soares, Felipe and Moreira, Viviane and Becker, Karin},
year = 2018,
booktitle = {
Proceedings of the Eleventh International Conference on Language Resources
and Evaluation (LREC-2018)
}
}
"""
_DATASETNAME = "scielo"
_DISPLAYNAME = "SciELO"
_DESCRIPTION = """\
A parallel corpus of full-text scientific articles collected from Scielo \
database in the following languages: English, Portuguese and Spanish. The corpus \
is sentence aligned for all language pairs, as well as trilingual aligned for a \
small subset of sentences. Alignment was carried out using the Hunalign \
algorithm.
"""
_HOMEPAGE = "https://sites.google.com/view/felipe-soares/datasets#h.p_92uSCyAjWSRB"
_LICENSE = 'Creative Commons Attribution 4.0 International'
_URLS = {
"en_es": "https://ndownloader.figstatic.com/files/14019287",
"en_pt": "https://ndownloader.figstatic.com/files/14019308",
"en_pt_es": "https://ndownloader.figstatic.com/files/14019293",
}
_SUPPORTED_TASKS = [Tasks.TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class ScieloDataset(datasets.GeneratorBasedBuilder):
"""Parallel corpus of full-text articles in Portuguese, English and Spanish from SciELO."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
# NOTE: bigbio_t2t schema doesn't allow only for more than two texts in text-to-text schema.
# en-pt-es translation is not implemented using the bigbio schema
BUILDER_CONFIGS = [
BigBioConfig(
name="scielo_en_es_source",
version=SOURCE_VERSION,
description="English-Spanish",
schema="source",
subset_id="scielo_en_es",
),
BigBioConfig(
name="scielo_en_pt_source",
version=SOURCE_VERSION,
description="English-Portuguese",
schema="source",
subset_id="scielo_en_pt",
),
BigBioConfig(
name="scielo_en_pt_es_source",
version=SOURCE_VERSION,
description="English-Portuguese-Spanish",
schema="source",
subset_id="scielo_en_pt_es",
),
BigBioConfig(
name="scielo_en_es_bigbio_t2t",
version=BIGBIO_VERSION,
description="scielo BigBio schema English-Spanish",
schema="bigbio_t2t",
subset_id="scielo_en_es",
),
BigBioConfig(
name="scielo_en_pt_bigbio_t2t",
version=BIGBIO_VERSION,
description="scielo BigBio schema English-Portuguese",
schema="bigbio_t2t",
subset_id="scielo_en_pt",
),
]
DEFAULT_CONFIG_NAME = "scielo_source_en_es"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
lang_list: List[str] = self.config.subset_id.split("_")[1:]
features = datasets.Features(
{"translation": datasets.features.Translation(languages=lang_list)}
)
elif self.config.schema == "bigbio_t2t":
features = text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
lang_list: List[str] = self.config.subset_id.split("_")[1:]
languages = "_".join(lang_list)
archive = dl_manager.download(_URLS[languages])
fname = languages
if languages == "en_pt_es":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"source_file": f"{fname}.en",
"target_file": f"{fname}.pt",
"target_file_2": f"{fname}.es",
"files": dl_manager.iter_archive(archive),
"languages": languages,
"split": "train",
},
),
]
else:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"source_file": f"{fname}.{lang_list[0]}",
"target_file": f"{fname}.{lang_list[1]}",
"files": dl_manager.iter_archive(archive),
"languages": languages,
"split": "train",
},
),
]
def _generate_examples(
self,
languages: str,
split: str,
source_file: str,
target_file: str,
files: Generator[Tuple[str, IO[bytes]], Any, None],
target_file_2: Optional[str] = None,
) -> Tuple[int, dict]:
if self.config.schema == "source":
for path, f in files:
if path == source_file:
source_sentences = f.read().decode("utf-8").split("\n")
elif path == target_file:
target_sentences = f.read().decode("utf-8").split("\n")
elif languages == "en_pt_es" and path == target_file_2:
target_sentences_2 = f.read().decode("utf-8").split("\n")
if languages == "en_pt_es":
source, target, target_2 = tuple(languages.split("_"))
for idx, (l1, l2, l3) in enumerate(
zip(source_sentences, target_sentences, target_sentences_2)
):
result = {"translation": {source: l1, target: l2, target_2: l3}}
yield idx, result
else:
source, target = tuple(languages.split("_"))
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)):
result = {"translation": {source: l1, target: l2}}
yield idx, result
elif self.config.schema == "bigbio_t2t":
for path, f in files:
if path == source_file:
source_sentences = f.read().decode("utf-8").split("\n")
elif path == target_file:
target_sentences = f.read().decode("utf-8").split("\n")
uid = 0
source, target = tuple(languages.split("_"))
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)):
uid += 1
yield idx, {
"id": str(uid),
"document_id": str(idx),
"text_1": l1,
"text_2": l2,
"text_1_name": source,
"text_2_name": target,
}
|