Datasets:
License:
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Parallel corpus of full-text articles in Portuguese, English and Spanish from SciELO. | |
""" | |
from typing import IO, Any, Generator, List, Optional, Tuple | |
import datasets | |
from .bigbiohub import text2text_features | |
from .bigbiohub import BigBioConfig | |
from .bigbiohub import Tasks | |
_LANGUAGES = ['English', 'Spanish', 'Portuguese'] | |
_PUBMED = False | |
_LOCAL = False | |
_CITATION = """\ | |
@inproceedings{soares2018large, | |
title = {A Large Parallel Corpus of Full-Text Scientific Articles}, | |
author = {Soares, Felipe and Moreira, Viviane and Becker, Karin}, | |
year = 2018, | |
booktitle = { | |
Proceedings of the Eleventh International Conference on Language Resources | |
and Evaluation (LREC-2018) | |
} | |
} | |
""" | |
_DATASETNAME = "scielo" | |
_DISPLAYNAME = "SciELO" | |
_DESCRIPTION = """\ | |
A parallel corpus of full-text scientific articles collected from Scielo \ | |
database in the following languages: English, Portuguese and Spanish. The corpus \ | |
is sentence aligned for all language pairs, as well as trilingual aligned for a \ | |
small subset of sentences. Alignment was carried out using the Hunalign \ | |
algorithm. | |
""" | |
_HOMEPAGE = "https://sites.google.com/view/felipe-soares/datasets#h.p_92uSCyAjWSRB" | |
_LICENSE = 'Creative Commons Attribution 4.0 International' | |
_URLS = { | |
"en_es": "https://ndownloader.figstatic.com/files/14019287", | |
"en_pt": "https://ndownloader.figstatic.com/files/14019308", | |
"en_pt_es": "https://ndownloader.figstatic.com/files/14019293", | |
} | |
_SUPPORTED_TASKS = [Tasks.TRANSLATION] | |
_SOURCE_VERSION = "1.0.0" | |
_BIGBIO_VERSION = "1.0.0" | |
class ScieloDataset(datasets.GeneratorBasedBuilder): | |
"""Parallel corpus of full-text articles in Portuguese, English and Spanish from SciELO.""" | |
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | |
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) | |
# NOTE: bigbio_t2t schema doesn't allow only for more than two texts in text-to-text schema. | |
# en-pt-es translation is not implemented using the bigbio schema | |
BUILDER_CONFIGS = [ | |
BigBioConfig( | |
name="scielo_en_es_source", | |
version=SOURCE_VERSION, | |
description="English-Spanish", | |
schema="source", | |
subset_id="scielo_en_es", | |
), | |
BigBioConfig( | |
name="scielo_en_pt_source", | |
version=SOURCE_VERSION, | |
description="English-Portuguese", | |
schema="source", | |
subset_id="scielo_en_pt", | |
), | |
BigBioConfig( | |
name="scielo_en_pt_es_source", | |
version=SOURCE_VERSION, | |
description="English-Portuguese-Spanish", | |
schema="source", | |
subset_id="scielo_en_pt_es", | |
), | |
BigBioConfig( | |
name="scielo_en_es_bigbio_t2t", | |
version=BIGBIO_VERSION, | |
description="scielo BigBio schema English-Spanish", | |
schema="bigbio_t2t", | |
subset_id="scielo_en_es", | |
), | |
BigBioConfig( | |
name="scielo_en_pt_bigbio_t2t", | |
version=BIGBIO_VERSION, | |
description="scielo BigBio schema English-Portuguese", | |
schema="bigbio_t2t", | |
subset_id="scielo_en_pt", | |
), | |
] | |
DEFAULT_CONFIG_NAME = "scielo_source_en_es" | |
def _info(self) -> datasets.DatasetInfo: | |
if self.config.schema == "source": | |
lang_list: List[str] = self.config.subset_id.split("_")[1:] | |
features = datasets.Features( | |
{"translation": datasets.features.Translation(languages=lang_list)} | |
) | |
elif self.config.schema == "bigbio_t2t": | |
features = text2text_features | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=str(_LICENSE), | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: | |
"""Returns SplitGenerators.""" | |
lang_list: List[str] = self.config.subset_id.split("_")[1:] | |
languages = "_".join(lang_list) | |
archive = dl_manager.download(_URLS[languages]) | |
fname = languages | |
if languages == "en_pt_es": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"source_file": f"{fname}.en", | |
"target_file": f"{fname}.pt", | |
"target_file_2": f"{fname}.es", | |
"files": dl_manager.iter_archive(archive), | |
"languages": languages, | |
"split": "train", | |
}, | |
), | |
] | |
else: | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"source_file": f"{fname}.{lang_list[0]}", | |
"target_file": f"{fname}.{lang_list[1]}", | |
"files": dl_manager.iter_archive(archive), | |
"languages": languages, | |
"split": "train", | |
}, | |
), | |
] | |
def _generate_examples( | |
self, | |
languages: str, | |
split: str, | |
source_file: str, | |
target_file: str, | |
files: Generator[Tuple[str, IO[bytes]], Any, None], | |
target_file_2: Optional[str] = None, | |
) -> Tuple[int, dict]: | |
if self.config.schema == "source": | |
for path, f in files: | |
if path == source_file: | |
source_sentences = f.read().decode("utf-8").split("\n") | |
elif path == target_file: | |
target_sentences = f.read().decode("utf-8").split("\n") | |
elif languages == "en_pt_es" and path == target_file_2: | |
target_sentences_2 = f.read().decode("utf-8").split("\n") | |
if languages == "en_pt_es": | |
source, target, target_2 = tuple(languages.split("_")) | |
for idx, (l1, l2, l3) in enumerate( | |
zip(source_sentences, target_sentences, target_sentences_2) | |
): | |
result = {"translation": {source: l1, target: l2, target_2: l3}} | |
yield idx, result | |
else: | |
source, target = tuple(languages.split("_")) | |
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)): | |
result = {"translation": {source: l1, target: l2}} | |
yield idx, result | |
elif self.config.schema == "bigbio_t2t": | |
for path, f in files: | |
if path == source_file: | |
source_sentences = f.read().decode("utf-8").split("\n") | |
elif path == target_file: | |
target_sentences = f.read().decode("utf-8").split("\n") | |
uid = 0 | |
source, target = tuple(languages.split("_")) | |
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)): | |
uid += 1 | |
yield idx, { | |
"id": str(uid), | |
"document_id": str(idx), | |
"text_1": l1, | |
"text_2": l2, | |
"text_1_name": source, | |
"text_2_name": target, | |
} | |