Datasets:
License:
from collections import defaultdict | |
from dataclasses import dataclass | |
from enum import Enum | |
import logging | |
from pathlib import Path | |
from types import SimpleNamespace | |
from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple | |
import datasets | |
if TYPE_CHECKING: | |
import bioc | |
logger = logging.getLogger(__name__) | |
BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>") | |
class BigBioConfig(datasets.BuilderConfig): | |
"""BuilderConfig for BigBio.""" | |
name: str = None | |
version: datasets.Version = None | |
description: str = None | |
schema: str = None | |
subset_id: str = None | |
class Tasks(Enum): | |
NAMED_ENTITY_RECOGNITION = "NER" | |
NAMED_ENTITY_DISAMBIGUATION = "NED" | |
EVENT_EXTRACTION = "EE" | |
RELATION_EXTRACTION = "RE" | |
COREFERENCE_RESOLUTION = "COREF" | |
QUESTION_ANSWERING = "QA" | |
TEXTUAL_ENTAILMENT = "TE" | |
SEMANTIC_SIMILARITY = "STS" | |
TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS" | |
PARAPHRASING = "PARA" | |
TRANSLATION = "TRANSL" | |
SUMMARIZATION = "SUM" | |
TEXT_CLASSIFICATION = "TXTCLASS" | |
entailment_features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"premise": datasets.Value("string"), | |
"hypothesis": datasets.Value("string"), | |
"label": datasets.Value("string"), | |
} | |
) | |
pairs_features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"document_id": datasets.Value("string"), | |
"text_1": datasets.Value("string"), | |
"text_2": datasets.Value("string"), | |
"label": datasets.Value("string"), | |
} | |
) | |
qa_features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"question_id": datasets.Value("string"), | |
"document_id": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"type": datasets.Value("string"), | |
"choices": [datasets.Value("string")], | |
"context": datasets.Value("string"), | |
"answer": datasets.Sequence(datasets.Value("string")), | |
} | |
) | |
text_features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"document_id": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
"labels": [datasets.Value("string")], | |
} | |
) | |
text2text_features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"document_id": datasets.Value("string"), | |
"text_1": datasets.Value("string"), | |
"text_2": datasets.Value("string"), | |
"text_1_name": datasets.Value("string"), | |
"text_2_name": datasets.Value("string"), | |
} | |
) | |
kb_features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"document_id": datasets.Value("string"), | |
"passages": [ | |
{ | |
"id": datasets.Value("string"), | |
"type": datasets.Value("string"), | |
"text": datasets.Sequence(datasets.Value("string")), | |
"offsets": datasets.Sequence([datasets.Value("int32")]), | |
} | |
], | |
"entities": [ | |
{ | |
"id": datasets.Value("string"), | |
"type": datasets.Value("string"), | |
"text": datasets.Sequence(datasets.Value("string")), | |
"offsets": datasets.Sequence([datasets.Value("int32")]), | |
"normalized": [ | |
{ | |
"db_name": datasets.Value("string"), | |
"db_id": datasets.Value("string"), | |
} | |
], | |
} | |
], | |
"events": [ | |
{ | |
"id": datasets.Value("string"), | |
"type": datasets.Value("string"), | |
# refers to the text_bound_annotation of the trigger | |
"trigger": { | |
"text": datasets.Sequence(datasets.Value("string")), | |
"offsets": datasets.Sequence([datasets.Value("int32")]), | |
}, | |
"arguments": [ | |
{ | |
"role": datasets.Value("string"), | |
"ref_id": datasets.Value("string"), | |
} | |
], | |
} | |
], | |
"coreferences": [ | |
{ | |
"id": datasets.Value("string"), | |
"entity_ids": datasets.Sequence(datasets.Value("string")), | |
} | |
], | |
"relations": [ | |
{ | |
"id": datasets.Value("string"), | |
"type": datasets.Value("string"), | |
"arg1_id": datasets.Value("string"), | |
"arg2_id": datasets.Value("string"), | |
"normalized": [ | |
{ | |
"db_name": datasets.Value("string"), | |
"db_id": datasets.Value("string"), | |
} | |
], | |
} | |
], | |
} | |
) | |
TASK_TO_SCHEMA = { | |
Tasks.NAMED_ENTITY_RECOGNITION.name: "KB", | |
Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB", | |
Tasks.EVENT_EXTRACTION.name: "KB", | |
Tasks.RELATION_EXTRACTION.name: "KB", | |
Tasks.COREFERENCE_RESOLUTION.name: "KB", | |
Tasks.QUESTION_ANSWERING.name: "QA", | |
Tasks.TEXTUAL_ENTAILMENT.name: "TE", | |
Tasks.SEMANTIC_SIMILARITY.name: "PAIRS", | |
Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS", | |
Tasks.PARAPHRASING.name: "T2T", | |
Tasks.TRANSLATION.name: "T2T", | |
Tasks.SUMMARIZATION.name: "T2T", | |
Tasks.TEXT_CLASSIFICATION.name: "TEXT", | |
} | |
SCHEMA_TO_TASKS = defaultdict(set) | |
for task, schema in TASK_TO_SCHEMA.items(): | |
SCHEMA_TO_TASKS[schema].add(task) | |
SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS) | |
VALID_TASKS = set(TASK_TO_SCHEMA.keys()) | |
VALID_SCHEMAS = set(TASK_TO_SCHEMA.values()) | |
SCHEMA_TO_FEATURES = { | |
"KB": kb_features, | |
"QA": qa_features, | |
"TE": entailment_features, | |
"T2T": text2text_features, | |
"TEXT": text_features, | |
"PAIRS": pairs_features, | |
} | |
def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple: | |
offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations] | |
text = ann.text | |
if len(offsets) > 1: | |
i = 0 | |
texts = [] | |
for start, end in offsets: | |
chunk_len = end - start | |
texts.append(text[i : chunk_len + i]) | |
i += chunk_len | |
while i < len(text) and text[i] == " ": | |
i += 1 | |
else: | |
texts = [text] | |
return offsets, texts | |
def remove_prefix(a: str, prefix: str) -> str: | |
if a.startswith(prefix): | |
a = a[len(prefix) :] | |
return a | |
def parse_brat_file( | |
txt_file: Path, | |
annotation_file_suffixes: List[str] = None, | |
parse_notes: bool = False, | |
) -> Dict: | |
""" | |
Parse a brat file into the schema defined below. | |
`txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt' | |
Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files, | |
e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'. | |
Will include annotator notes, when `parse_notes == True`. | |
brat_features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"document_id": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger | |
{ | |
"offsets": datasets.Sequence([datasets.Value("int32")]), | |
"text": datasets.Sequence(datasets.Value("string")), | |
"type": datasets.Value("string"), | |
"id": datasets.Value("string"), | |
} | |
], | |
"events": [ # E line in brat | |
{ | |
"trigger": datasets.Value( | |
"string" | |
), # refers to the text_bound_annotation of the trigger, | |
"id": datasets.Value("string"), | |
"type": datasets.Value("string"), | |
"arguments": datasets.Sequence( | |
{ | |
"role": datasets.Value("string"), | |
"ref_id": datasets.Value("string"), | |
} | |
), | |
} | |
], | |
"relations": [ # R line in brat | |
{ | |
"id": datasets.Value("string"), | |
"head": { | |
"ref_id": datasets.Value("string"), | |
"role": datasets.Value("string"), | |
}, | |
"tail": { | |
"ref_id": datasets.Value("string"), | |
"role": datasets.Value("string"), | |
}, | |
"type": datasets.Value("string"), | |
} | |
], | |
"equivalences": [ # Equiv line in brat | |
{ | |
"id": datasets.Value("string"), | |
"ref_ids": datasets.Sequence(datasets.Value("string")), | |
} | |
], | |
"attributes": [ # M or A lines in brat | |
{ | |
"id": datasets.Value("string"), | |
"type": datasets.Value("string"), | |
"ref_id": datasets.Value("string"), | |
"value": datasets.Value("string"), | |
} | |
], | |
"normalizations": [ # N lines in brat | |
{ | |
"id": datasets.Value("string"), | |
"type": datasets.Value("string"), | |
"ref_id": datasets.Value("string"), | |
"resource_name": datasets.Value( | |
"string" | |
), # Name of the resource, e.g. "Wikipedia" | |
"cuid": datasets.Value( | |
"string" | |
), # ID in the resource, e.g. 534366 | |
"text": datasets.Value( | |
"string" | |
), # Human readable description/name of the entity, e.g. "Barack Obama" | |
} | |
], | |
### OPTIONAL: Only included when `parse_notes == True` | |
"notes": [ # # lines in brat | |
{ | |
"id": datasets.Value("string"), | |
"type": datasets.Value("string"), | |
"ref_id": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
} | |
], | |
}, | |
) | |
""" | |
example = {} | |
example["document_id"] = txt_file.with_suffix("").name | |
with txt_file.open() as f: | |
example["text"] = f.read() | |
# If no specific suffixes of the to-be-read annotation files are given - take standard suffixes | |
# for event extraction | |
if annotation_file_suffixes is None: | |
annotation_file_suffixes = [".a1", ".a2", ".ann"] | |
if len(annotation_file_suffixes) == 0: | |
raise AssertionError( | |
"At least one suffix for the to-be-read annotation files should be given!" | |
) | |
ann_lines = [] | |
for suffix in annotation_file_suffixes: | |
annotation_file = txt_file.with_suffix(suffix) | |
try: | |
with annotation_file.open() as f: | |
ann_lines.extend(f.readlines()) | |
except Exception: | |
continue | |
example["text_bound_annotations"] = [] | |
example["events"] = [] | |
example["relations"] = [] | |
example["equivalences"] = [] | |
example["attributes"] = [] | |
example["normalizations"] = [] | |
if parse_notes: | |
example["notes"] = [] | |
for line in ann_lines: | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith("T"): # Text bound | |
ann = {} | |
fields = line.split("\t") | |
ann["id"] = fields[0] | |
ann["type"] = fields[1].split()[0] | |
ann["offsets"] = [] | |
span_str = remove_prefix(fields[1], (ann["type"] + " ")) | |
text = fields[2] | |
for span in span_str.split(";"): | |
start, end = span.split() | |
ann["offsets"].append([int(start), int(end)]) | |
# Heuristically split text of discontiguous entities into chunks | |
ann["text"] = [] | |
if len(ann["offsets"]) > 1: | |
i = 0 | |
for start, end in ann["offsets"]: | |
chunk_len = end - start | |
ann["text"].append(text[i : chunk_len + i]) | |
i += chunk_len | |
while i < len(text) and text[i] == " ": | |
i += 1 | |
else: | |
ann["text"] = [text] | |
example["text_bound_annotations"].append(ann) | |
elif line.startswith("E"): | |
ann = {} | |
fields = line.split("\t") | |
ann["id"] = fields[0] | |
ann["type"], ann["trigger"] = fields[1].split()[0].split(":") | |
ann["arguments"] = [] | |
for role_ref_id in fields[1].split()[1:]: | |
argument = { | |
"role": (role_ref_id.split(":"))[0], | |
"ref_id": (role_ref_id.split(":"))[1], | |
} | |
ann["arguments"].append(argument) | |
example["events"].append(ann) | |
elif line.startswith("R"): | |
ann = {} | |
fields = line.split("\t") | |
ann["id"] = fields[0] | |
ann["type"] = fields[1].split()[0] | |
ann["head"] = { | |
"role": fields[1].split()[1].split(":")[0], | |
"ref_id": fields[1].split()[1].split(":")[1], | |
} | |
ann["tail"] = { | |
"role": fields[1].split()[2].split(":")[0], | |
"ref_id": fields[1].split()[2].split(":")[1], | |
} | |
example["relations"].append(ann) | |
# '*' seems to be the legacy way to mark equivalences, | |
# but I couldn't find any info on the current way | |
# this might have to be adapted dependent on the brat version | |
# of the annotation | |
elif line.startswith("*"): | |
ann = {} | |
fields = line.split("\t") | |
ann["id"] = fields[0] | |
ann["ref_ids"] = fields[1].split()[1:] | |
example["equivalences"].append(ann) | |
elif line.startswith("A") or line.startswith("M"): | |
ann = {} | |
fields = line.split("\t") | |
ann["id"] = fields[0] | |
info = fields[1].split() | |
ann["type"] = info[0] | |
ann["ref_id"] = info[1] | |
if len(info) > 2: | |
ann["value"] = info[2] | |
else: | |
ann["value"] = "" | |
example["attributes"].append(ann) | |
elif line.startswith("N"): | |
ann = {} | |
fields = line.split("\t") | |
ann["id"] = fields[0] | |
ann["text"] = fields[2] | |
info = fields[1].split() | |
ann["type"] = info[0] | |
ann["ref_id"] = info[1] | |
ann["resource_name"] = info[2].split(":")[0] | |
ann["cuid"] = info[2].split(":")[1] | |
example["normalizations"].append(ann) | |
elif parse_notes and line.startswith("#"): | |
ann = {} | |
fields = line.split("\t") | |
ann["id"] = fields[0] | |
ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL | |
info = fields[1].split() | |
ann["type"] = info[0] | |
ann["ref_id"] = info[1] | |
example["notes"].append(ann) | |
return example | |
def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict: | |
""" | |
Transform a brat parse (conforming to the standard brat schema) obtained with | |
`parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py) | |
:param brat_parse: | |
""" | |
unified_example = {} | |
# Prefix all ids with document id to ensure global uniqueness, | |
# because brat ids are only unique within their document | |
id_prefix = brat_parse["document_id"] + "_" | |
# identical | |
unified_example["document_id"] = brat_parse["document_id"] | |
unified_example["passages"] = [ | |
{ | |
"id": id_prefix + "_text", | |
"type": "abstract", | |
"text": [brat_parse["text"]], | |
"offsets": [[0, len(brat_parse["text"])]], | |
} | |
] | |
# get normalizations | |
ref_id_to_normalizations = defaultdict(list) | |
for normalization in brat_parse["normalizations"]: | |
ref_id_to_normalizations[normalization["ref_id"]].append( | |
{ | |
"db_name": normalization["resource_name"], | |
"db_id": normalization["cuid"], | |
} | |
) | |
# separate entities and event triggers | |
unified_example["events"] = [] | |
non_event_ann = brat_parse["text_bound_annotations"].copy() | |
for event in brat_parse["events"]: | |
event = event.copy() | |
event["id"] = id_prefix + event["id"] | |
trigger = next( | |
tr | |
for tr in brat_parse["text_bound_annotations"] | |
if tr["id"] == event["trigger"] | |
) | |
if trigger in non_event_ann: | |
non_event_ann.remove(trigger) | |
event["trigger"] = { | |
"text": trigger["text"].copy(), | |
"offsets": trigger["offsets"].copy(), | |
} | |
for argument in event["arguments"]: | |
argument["ref_id"] = id_prefix + argument["ref_id"] | |
unified_example["events"].append(event) | |
unified_example["entities"] = [] | |
anno_ids = [ref_id["id"] for ref_id in non_event_ann] | |
for ann in non_event_ann: | |
entity_ann = ann.copy() | |
entity_ann["id"] = id_prefix + entity_ann["id"] | |
entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]] | |
unified_example["entities"].append(entity_ann) | |
# massage relations | |
unified_example["relations"] = [] | |
skipped_relations = set() | |
for ann in brat_parse["relations"]: | |
if ( | |
ann["head"]["ref_id"] not in anno_ids | |
or ann["tail"]["ref_id"] not in anno_ids | |
): | |
skipped_relations.add(ann["id"]) | |
continue | |
unified_example["relations"].append( | |
{ | |
"arg1_id": id_prefix + ann["head"]["ref_id"], | |
"arg2_id": id_prefix + ann["tail"]["ref_id"], | |
"id": id_prefix + ann["id"], | |
"type": ann["type"], | |
"normalized": [], | |
} | |
) | |
if len(skipped_relations) > 0: | |
example_id = brat_parse["document_id"] | |
logger.info( | |
f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities." | |
f" Skip (for now): " | |
f"{list(skipped_relations)}" | |
) | |
# get coreferences | |
unified_example["coreferences"] = [] | |
for i, ann in enumerate(brat_parse["equivalences"], start=1): | |
is_entity_cluster = True | |
for ref_id in ann["ref_ids"]: | |
if not ref_id.startswith("T"): # not textbound -> no entity | |
is_entity_cluster = False | |
elif ref_id not in anno_ids: # event trigger -> no entity | |
is_entity_cluster = False | |
if is_entity_cluster: | |
entity_ids = [id_prefix + i for i in ann["ref_ids"]] | |
unified_example["coreferences"].append( | |
{"id": id_prefix + str(i), "entity_ids": entity_ids} | |
) | |
return unified_example | |