path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
72101116/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import math, random from sklearn.model_selection import KFold, train_test_split from sklearn.metrics import mean_squared_error from sklearn.preprocessing import LabelEncoder pd.set_option('display.max_columns', 100) from lightgbm import LGBMRegressor SEED = 47 PATH = '../input/30-days-of-ml/' df_train = pd.read_csv(PATH + '/train.csv') df_test = pd.read_csv(PATH + '/test.csv') df_sub = pd.read_csv(PATH + '/sample_submission.csv') target = df_train['target'] features = df_train.drop(['id', 'target'], axis=1) features.head()
code
72101116/cell_28
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
test_feature_matrix.head()
code
72101116/cell_3
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import math, random from sklearn.model_selection import KFold, train_test_split from sklearn.metrics import mean_squared_error from sklearn.preprocessing import LabelEncoder pd.set_option('display.max_columns', 100) from lightgbm import LGBMRegressor SEED = 47
code
72101116/cell_17
[ "text_plain_output_4.png", "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
study = optuna.create_study(direction='minimize') study.optimize(objective, n_trials=5) print('Number of finished trials:', len(study.trials)) print('Best trial:', study.best_trial.params) print('Best score:', study.best_trial.value)
code
72101116/cell_22
[ "text_html_output_2.png" ]
study.best_params
code
72101116/cell_27
[ "text_plain_output_1.png" ]
import featuretools as ft import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import math, random from sklearn.model_selection import KFold, train_test_split from sklearn.metrics import mean_squared_error from sklearn.preprocessing import LabelEncoder pd.set_option('display.max_columns', 100) from lightgbm import LGBMRegressor SEED = 47 PATH = '../input/30-days-of-ml/' df_train = pd.read_csv(PATH + '/train.csv') df_test = pd.read_csv(PATH + '/test.csv') df_sub = pd.read_csv(PATH + '/sample_submission.csv') target = df_train['target'] features = df_train.drop(['id', 'target'], axis=1) es = ft.EntitySet(id='data') es.entity_from_dataframe(entity_id='january', dataframe=features, index='id') feature_matrix, feature_defs = ft.dfs(entityset=es, target_entity='january', trans_primitives=['add_numeric', 'multiply_numeric'], verbose=1) cat_features = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'] df_cat = feature_matrix[cat_features] feature_matrix = feature_matrix.drop(cat_features, axis=1) features = df_test.drop(cat_features, axis=1) es = ft.EntitySet(id='data') es.entity_from_dataframe(entity_id='target', dataframe=features, index='id') test_feature_matrix, test_feature_defs = ft.dfs(entityset=es, target_entity='target', trans_primitives=['add_numeric', 'multiply_numeric'], verbose=1)
code
130022661/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns from sklearn import preprocessing from sklearn.model_selection import train_test_split test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') def countna(df, column): col = pd.Series(list(df.loc[:, column])) num = col.isna().sum() for column in train.columns: countna(train, column) train = train.drop(['Cabin'], axis=1) train = train.dropna(subset=['Embarked']) for column in train.columns: countna(train, column) irrelevant_columns = ['PassengerId'] categorical_columns = ['Pclass', 'Embarked'] to_binary_columns = ['Sex'] numerical_columns = ['Age', 'SibSp', 'Parch', 'Fare'] other_columns = ['Name', 'Ticket'] label_columns = ['Survived'] train = train.drop(['PassengerId'], axis=1) trainbeforedummies = train.copy() trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['0'], 'Did Not Survive') trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['1'], 'Survived') train = pd.get_dummies(train, columns=categorical_columns) gender = {'male': 1, 'female': 0} train.Sex = [gender[item] for item in train.Sex] train = train.drop(['Name', 'Ticket'], axis=1) y = train.pop('Survived') x = train x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33) from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=2, weights='uniform') imputer = imputer.fit(x) x_train = imputer.transform(x_train) x_test = imputer.transform(x_test) from sklearn.preprocessing import MinMaxScaler norm = MinMaxScaler().fit(x_train) x_train_norm = norm.transform(x_train) x_test_norm = norm.transform(x_test) from sklearn.preprocessing import StandardScaler x_train_stand = x_train.copy() x_test_stand = x_test.copy() for i in [1, 2, 3, 4]: scale = StandardScaler().fit(x_train_stand[[i]]) x_train_stand[i] = scale.transform(x_train_stand[[i]]) x_test_stand[i] = scale.transform(x_test_stand[[i]]) x_train_stand_df = pd.DataFrame(x_train_stand, columns=list(x.columns)) x_train_norm_df = pd.DataFrame(x_train_norm, columns=list(x.columns)) x_train_reg_df = pd.DataFrame(x_train, columns=list(x.columns)) x_test_stand_df = pd.DataFrame(x_test_stand, columns=list(x.columns)) x_test_norm_df = pd.DataFrame(x_test_norm, columns=list(x.columns)) x_test_reg_df = pd.DataFrame(x_test, columns=list(x.columns)) x_stand_df = pd.concat([x_train_stand_df, x_test_stand_df]) x_norm_df = pd.concat([x_train_norm_df, x_test_norm_df]) x_reg_df = pd.concat([x_train_reg_df, x_test_reg_df]) x_stand_df_with_y = x_stand_df.copy() x_stand_df_with_y['Survived'] = y x_norm_df_with_y = x_norm_df.copy() x_norm_df_with_y['Survived'] = y x_reg_df_with_y = x_norm_df.copy() x_reg_df_with_y['Survived'] = y import seaborn as sns sns.countplot(x='Pclass', data=trainbeforedummies)
code
130022661/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns from sklearn import preprocessing from sklearn.model_selection import train_test_split test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') def countna(df, column): col = pd.Series(list(df.loc[:, column])) num = col.isna().sum() for column in train.columns: countna(train, column) train = train.drop(['Cabin'], axis=1) train = train.dropna(subset=['Embarked']) for column in train.columns: countna(train, column) irrelevant_columns = ['PassengerId'] categorical_columns = ['Pclass', 'Embarked'] to_binary_columns = ['Sex'] numerical_columns = ['Age', 'SibSp', 'Parch', 'Fare'] other_columns = ['Name', 'Ticket'] label_columns = ['Survived'] train = train.drop(['PassengerId'], axis=1) trainbeforedummies = train.copy() trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['0'], 'Did Not Survive') trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['1'], 'Survived') train = pd.get_dummies(train, columns=categorical_columns) gender = {'male': 1, 'female': 0} train.Sex = [gender[item] for item in train.Sex] train = train.drop(['Name', 'Ticket'], axis=1) y = train.pop('Survived') x = train x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33) from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=2, weights='uniform') imputer = imputer.fit(x) x_train = imputer.transform(x_train) x_test = imputer.transform(x_test) from sklearn.preprocessing import MinMaxScaler norm = MinMaxScaler().fit(x_train) x_train_norm = norm.transform(x_train) x_test_norm = norm.transform(x_test) from sklearn.preprocessing import StandardScaler x_train_stand = x_train.copy() x_test_stand = x_test.copy() for i in [1, 2, 3, 4]: scale = StandardScaler().fit(x_train_stand[[i]]) x_train_stand[i] = scale.transform(x_train_stand[[i]]) x_test_stand[i] = scale.transform(x_test_stand[[i]]) x_train_stand_df = pd.DataFrame(x_train_stand, columns=list(x.columns)) x_train_norm_df = pd.DataFrame(x_train_norm, columns=list(x.columns)) x_train_reg_df = pd.DataFrame(x_train, columns=list(x.columns)) x_test_stand_df = pd.DataFrame(x_test_stand, columns=list(x.columns)) x_test_norm_df = pd.DataFrame(x_test_norm, columns=list(x.columns)) x_test_reg_df = pd.DataFrame(x_test, columns=list(x.columns)) x_stand_df = pd.concat([x_train_stand_df, x_test_stand_df]) x_norm_df = pd.concat([x_train_norm_df, x_test_norm_df]) x_reg_df = pd.concat([x_train_reg_df, x_test_reg_df]) x_stand_df_with_y = x_stand_df.copy() x_stand_df_with_y['Survived'] = y x_norm_df_with_y = x_norm_df.copy() x_norm_df_with_y['Survived'] = y x_reg_df_with_y = x_norm_df.copy() x_reg_df_with_y['Survived'] = y import seaborn as sns sns.kdeplot(data=x_reg_df, x='Age')
code
130022661/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns from sklearn import preprocessing from sklearn.model_selection import train_test_split test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') def countna(df, column): col = pd.Series(list(df.loc[:, column])) num = col.isna().sum() for column in train.columns: countna(train, column) train = train.drop(['Cabin'], axis=1) train = train.dropna(subset=['Embarked']) for column in train.columns: countna(train, column) irrelevant_columns = ['PassengerId'] categorical_columns = ['Pclass', 'Embarked'] to_binary_columns = ['Sex'] numerical_columns = ['Age', 'SibSp', 'Parch', 'Fare'] other_columns = ['Name', 'Ticket'] label_columns = ['Survived'] train = train.drop(['PassengerId'], axis=1) trainbeforedummies = train.copy() trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['0'], 'Did Not Survive') trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['1'], 'Survived') train = pd.get_dummies(train, columns=categorical_columns) gender = {'male': 1, 'female': 0} train.Sex = [gender[item] for item in train.Sex] train = train.drop(['Name', 'Ticket'], axis=1) y = train.pop('Survived') x = train x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33) from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=2, weights='uniform') imputer = imputer.fit(x) x_train = imputer.transform(x_train) x_test = imputer.transform(x_test) from sklearn.preprocessing import MinMaxScaler norm = MinMaxScaler().fit(x_train) x_train_norm = norm.transform(x_train) x_test_norm = norm.transform(x_test) from sklearn.preprocessing import StandardScaler x_train_stand = x_train.copy() x_test_stand = x_test.copy() for i in [1, 2, 3, 4]: scale = StandardScaler().fit(x_train_stand[[i]]) x_train_stand[i] = scale.transform(x_train_stand[[i]]) x_test_stand[i] = scale.transform(x_test_stand[[i]]) x_train_stand_df = pd.DataFrame(x_train_stand, columns=list(x.columns)) x_train_norm_df = pd.DataFrame(x_train_norm, columns=list(x.columns)) x_train_reg_df = pd.DataFrame(x_train, columns=list(x.columns)) x_test_stand_df = pd.DataFrame(x_test_stand, columns=list(x.columns)) x_test_norm_df = pd.DataFrame(x_test_norm, columns=list(x.columns)) x_test_reg_df = pd.DataFrame(x_test, columns=list(x.columns)) x_stand_df = pd.concat([x_train_stand_df, x_test_stand_df]) x_norm_df = pd.concat([x_train_norm_df, x_test_norm_df]) x_reg_df = pd.concat([x_train_reg_df, x_test_reg_df]) x_stand_df_with_y = x_stand_df.copy() x_stand_df_with_y['Survived'] = y x_norm_df_with_y = x_norm_df.copy() x_norm_df_with_y['Survived'] = y x_reg_df_with_y = x_norm_df.copy() x_reg_df_with_y['Survived'] = y import seaborn as sns sns.countplot(data=trainbeforedummies, x='Pclass', hue='Survived')
code
130022661/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn import preprocessing from sklearn.model_selection import train_test_split test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') def countna(df, column): col = pd.Series(list(df.loc[:, column])) num = col.isna().sum() for column in train.columns: countna(train, column) train = train.drop(['Cabin'], axis=1) train = train.dropna(subset=['Embarked']) for column in train.columns: countna(train, column) irrelevant_columns = ['PassengerId'] categorical_columns = ['Pclass', 'Embarked'] to_binary_columns = ['Sex'] numerical_columns = ['Age', 'SibSp', 'Parch', 'Fare'] other_columns = ['Name', 'Ticket'] label_columns = ['Survived'] train = train.drop(['PassengerId'], axis=1) trainbeforedummies = train.copy() trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['0'], 'Did Not Survive') trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['1'], 'Survived') train = pd.get_dummies(train, columns=categorical_columns) gender = {'male': 1, 'female': 0} train.Sex = [gender[item] for item in train.Sex] train = train.drop(['Name', 'Ticket'], axis=1) y = train.pop('Survived') x = train x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33) from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=2, weights='uniform') imputer = imputer.fit(x) x_train = imputer.transform(x_train) x_test = imputer.transform(x_test) from sklearn.preprocessing import MinMaxScaler norm = MinMaxScaler().fit(x_train) x_train_norm = norm.transform(x_train) x_test_norm = norm.transform(x_test) from sklearn.preprocessing import StandardScaler x_train_stand = x_train.copy() x_test_stand = x_test.copy() for i in [1, 2, 3, 4]: scale = StandardScaler().fit(x_train_stand[[i]]) x_train_stand[i] = scale.transform(x_train_stand[[i]]) x_test_stand[i] = scale.transform(x_test_stand[[i]]) x_train_stand_df = pd.DataFrame(x_train_stand, columns=list(x.columns)) x_train_norm_df = pd.DataFrame(x_train_norm, columns=list(x.columns)) x_train_reg_df = pd.DataFrame(x_train, columns=list(x.columns)) x_test_stand_df = pd.DataFrame(x_test_stand, columns=list(x.columns)) x_test_norm_df = pd.DataFrame(x_test_norm, columns=list(x.columns)) x_test_reg_df = pd.DataFrame(x_test, columns=list(x.columns)) x_stand_df = pd.concat([x_train_stand_df, x_test_stand_df]) x_norm_df = pd.concat([x_train_norm_df, x_test_norm_df]) x_reg_df = pd.concat([x_train_reg_df, x_test_reg_df]) x_stand_df_with_y = x_stand_df.copy() x_stand_df_with_y['Survived'] = y x_norm_df_with_y = x_norm_df.copy() x_norm_df_with_y['Survived'] = y x_reg_df_with_y = x_norm_df.copy() x_reg_df_with_y['Survived'] = y test = pd.read_csv('/kaggle/input/titanic/test.csv') test = test.drop(['Cabin'], axis=1) print('Na after fixing cabin and embark') for column in train.columns: countna(train, column) test = test.drop(['PassengerId'], axis=1) test = pd.get_dummies(test, columns=categorical_columns) gender = {'male': 1, 'female': 0} test.Sex = [gender[item] for item in test.Sex] test = test.drop(['Name', 'Ticket'], axis=1) test = imputer.transform(test) test_norm = norm.transform(test) test_stand = test.copy() for i in [1, 2, 3, 4]: test_stand[i] = scale.transform(test_stand[[i]])
code
130022661/cell_11
[ "text_plain_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns from sklearn import preprocessing from sklearn.model_selection import train_test_split test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') def countna(df, column): col = pd.Series(list(df.loc[:, column])) num = col.isna().sum() for column in train.columns: countna(train, column) train = train.drop(['Cabin'], axis=1) train = train.dropna(subset=['Embarked']) for column in train.columns: countna(train, column) irrelevant_columns = ['PassengerId'] categorical_columns = ['Pclass', 'Embarked'] to_binary_columns = ['Sex'] numerical_columns = ['Age', 'SibSp', 'Parch', 'Fare'] other_columns = ['Name', 'Ticket'] label_columns = ['Survived'] train = train.drop(['PassengerId'], axis=1) trainbeforedummies = train.copy() trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['0'], 'Did Not Survive') trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['1'], 'Survived') train = pd.get_dummies(train, columns=categorical_columns) gender = {'male': 1, 'female': 0} train.Sex = [gender[item] for item in train.Sex] train = train.drop(['Name', 'Ticket'], axis=1) y = train.pop('Survived') x = train x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33) from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=2, weights='uniform') imputer = imputer.fit(x) x_train = imputer.transform(x_train) x_test = imputer.transform(x_test) from sklearn.preprocessing import MinMaxScaler norm = MinMaxScaler().fit(x_train) x_train_norm = norm.transform(x_train) x_test_norm = norm.transform(x_test) from sklearn.preprocessing import StandardScaler x_train_stand = x_train.copy() x_test_stand = x_test.copy() for i in [1, 2, 3, 4]: scale = StandardScaler().fit(x_train_stand[[i]]) x_train_stand[i] = scale.transform(x_train_stand[[i]]) x_test_stand[i] = scale.transform(x_test_stand[[i]]) x_train_stand_df = pd.DataFrame(x_train_stand, columns=list(x.columns)) x_train_norm_df = pd.DataFrame(x_train_norm, columns=list(x.columns)) x_train_reg_df = pd.DataFrame(x_train, columns=list(x.columns)) x_test_stand_df = pd.DataFrame(x_test_stand, columns=list(x.columns)) x_test_norm_df = pd.DataFrame(x_test_norm, columns=list(x.columns)) x_test_reg_df = pd.DataFrame(x_test, columns=list(x.columns)) x_stand_df = pd.concat([x_train_stand_df, x_test_stand_df]) x_norm_df = pd.concat([x_train_norm_df, x_test_norm_df]) x_reg_df = pd.concat([x_train_reg_df, x_test_reg_df]) x_stand_df_with_y = x_stand_df.copy() x_stand_df_with_y['Survived'] = y x_norm_df_with_y = x_norm_df.copy() x_norm_df_with_y['Survived'] = y x_reg_df_with_y = x_norm_df.copy() x_reg_df_with_y['Survived'] = y import seaborn as sns sns.countplot(x='Sex', data=x_reg_df)
code
130022661/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns from sklearn import preprocessing from sklearn.model_selection import train_test_split test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') def countna(df, column): col = pd.Series(list(df.loc[:, column])) num = col.isna().sum() for column in train.columns: countna(train, column) train = train.drop(['Cabin'], axis=1) train = train.dropna(subset=['Embarked']) for column in train.columns: countna(train, column) irrelevant_columns = ['PassengerId'] categorical_columns = ['Pclass', 'Embarked'] to_binary_columns = ['Sex'] numerical_columns = ['Age', 'SibSp', 'Parch', 'Fare'] other_columns = ['Name', 'Ticket'] label_columns = ['Survived'] train = train.drop(['PassengerId'], axis=1) trainbeforedummies = train.copy() trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['0'], 'Did Not Survive') trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['1'], 'Survived') train = pd.get_dummies(train, columns=categorical_columns) gender = {'male': 1, 'female': 0} train.Sex = [gender[item] for item in train.Sex] train = train.drop(['Name', 'Ticket'], axis=1) y = train.pop('Survived') x = train x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33) from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=2, weights='uniform') imputer = imputer.fit(x) x_train = imputer.transform(x_train) x_test = imputer.transform(x_test) from sklearn.preprocessing import MinMaxScaler norm = MinMaxScaler().fit(x_train) x_train_norm = norm.transform(x_train) x_test_norm = norm.transform(x_test) from sklearn.preprocessing import StandardScaler x_train_stand = x_train.copy() x_test_stand = x_test.copy() for i in [1, 2, 3, 4]: scale = StandardScaler().fit(x_train_stand[[i]]) x_train_stand[i] = scale.transform(x_train_stand[[i]]) x_test_stand[i] = scale.transform(x_test_stand[[i]]) x_train_stand_df = pd.DataFrame(x_train_stand, columns=list(x.columns)) x_train_norm_df = pd.DataFrame(x_train_norm, columns=list(x.columns)) x_train_reg_df = pd.DataFrame(x_train, columns=list(x.columns)) x_test_stand_df = pd.DataFrame(x_test_stand, columns=list(x.columns)) x_test_norm_df = pd.DataFrame(x_test_norm, columns=list(x.columns)) x_test_reg_df = pd.DataFrame(x_test, columns=list(x.columns)) x_stand_df = pd.concat([x_train_stand_df, x_test_stand_df]) x_norm_df = pd.concat([x_train_norm_df, x_test_norm_df]) x_reg_df = pd.concat([x_train_reg_df, x_test_reg_df]) x_stand_df_with_y = x_stand_df.copy() x_stand_df_with_y['Survived'] = y x_norm_df_with_y = x_norm_df.copy() x_norm_df_with_y['Survived'] = y x_reg_df_with_y = x_norm_df.copy() x_reg_df_with_y['Survived'] = y import seaborn as sns sns.countplot(data=trainbeforedummies, x='Parch', hue='Survived')
code
130022661/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
130022661/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns from sklearn import preprocessing from sklearn.model_selection import train_test_split test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') def countna(df, column): col = pd.Series(list(df.loc[:, column])) num = col.isna().sum() for column in train.columns: countna(train, column) train = train.drop(['Cabin'], axis=1) train = train.dropna(subset=['Embarked']) for column in train.columns: countna(train, column) irrelevant_columns = ['PassengerId'] categorical_columns = ['Pclass', 'Embarked'] to_binary_columns = ['Sex'] numerical_columns = ['Age', 'SibSp', 'Parch', 'Fare'] other_columns = ['Name', 'Ticket'] label_columns = ['Survived'] train = train.drop(['PassengerId'], axis=1) trainbeforedummies = train.copy() trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['0'], 'Did Not Survive') trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['1'], 'Survived') train = pd.get_dummies(train, columns=categorical_columns) gender = {'male': 1, 'female': 0} train.Sex = [gender[item] for item in train.Sex] train = train.drop(['Name', 'Ticket'], axis=1) y = train.pop('Survived') x = train x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33) from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=2, weights='uniform') imputer = imputer.fit(x) x_train = imputer.transform(x_train) x_test = imputer.transform(x_test) from sklearn.preprocessing import MinMaxScaler norm = MinMaxScaler().fit(x_train) x_train_norm = norm.transform(x_train) x_test_norm = norm.transform(x_test) from sklearn.preprocessing import StandardScaler x_train_stand = x_train.copy() x_test_stand = x_test.copy() for i in [1, 2, 3, 4]: scale = StandardScaler().fit(x_train_stand[[i]]) x_train_stand[i] = scale.transform(x_train_stand[[i]]) x_test_stand[i] = scale.transform(x_test_stand[[i]]) x_train_stand_df = pd.DataFrame(x_train_stand, columns=list(x.columns)) x_train_norm_df = pd.DataFrame(x_train_norm, columns=list(x.columns)) x_train_reg_df = pd.DataFrame(x_train, columns=list(x.columns)) x_test_stand_df = pd.DataFrame(x_test_stand, columns=list(x.columns)) x_test_norm_df = pd.DataFrame(x_test_norm, columns=list(x.columns)) x_test_reg_df = pd.DataFrame(x_test, columns=list(x.columns)) x_stand_df = pd.concat([x_train_stand_df, x_test_stand_df]) x_norm_df = pd.concat([x_train_norm_df, x_test_norm_df]) x_reg_df = pd.concat([x_train_reg_df, x_test_reg_df]) x_stand_df_with_y = x_stand_df.copy() x_stand_df_with_y['Survived'] = y x_norm_df_with_y = x_norm_df.copy() x_norm_df_with_y['Survived'] = y x_reg_df_with_y = x_norm_df.copy() x_reg_df_with_y['Survived'] = y import seaborn as sns sns.kdeplot(data=trainbeforedummies, x='Fare', hue='Survived', multiple='stack')
code
130022661/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns from sklearn import preprocessing from sklearn.model_selection import train_test_split test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') def countna(df, column): col = pd.Series(list(df.loc[:, column])) num = col.isna().sum() for column in train.columns: countna(train, column) train = train.drop(['Cabin'], axis=1) train = train.dropna(subset=['Embarked']) for column in train.columns: countna(train, column) irrelevant_columns = ['PassengerId'] categorical_columns = ['Pclass', 'Embarked'] to_binary_columns = ['Sex'] numerical_columns = ['Age', 'SibSp', 'Parch', 'Fare'] other_columns = ['Name', 'Ticket'] label_columns = ['Survived'] train = train.drop(['PassengerId'], axis=1) trainbeforedummies = train.copy() trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['0'], 'Did Not Survive') trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['1'], 'Survived') train = pd.get_dummies(train, columns=categorical_columns) gender = {'male': 1, 'female': 0} train.Sex = [gender[item] for item in train.Sex] train = train.drop(['Name', 'Ticket'], axis=1) y = train.pop('Survived') x = train x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33) from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=2, weights='uniform') imputer = imputer.fit(x) x_train = imputer.transform(x_train) x_test = imputer.transform(x_test) from sklearn.preprocessing import MinMaxScaler norm = MinMaxScaler().fit(x_train) x_train_norm = norm.transform(x_train) x_test_norm = norm.transform(x_test) from sklearn.preprocessing import StandardScaler x_train_stand = x_train.copy() x_test_stand = x_test.copy() for i in [1, 2, 3, 4]: scale = StandardScaler().fit(x_train_stand[[i]]) x_train_stand[i] = scale.transform(x_train_stand[[i]]) x_test_stand[i] = scale.transform(x_test_stand[[i]]) import seaborn as sns sns.countplot(x='Survived', data=trainbeforedummies)
code
130022661/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns from sklearn import preprocessing from sklearn.model_selection import train_test_split test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') def countna(df, column): col = pd.Series(list(df.loc[:, column])) num = col.isna().sum() for column in train.columns: countna(train, column) train = train.drop(['Cabin'], axis=1) train = train.dropna(subset=['Embarked']) for column in train.columns: countna(train, column) irrelevant_columns = ['PassengerId'] categorical_columns = ['Pclass', 'Embarked'] to_binary_columns = ['Sex'] numerical_columns = ['Age', 'SibSp', 'Parch', 'Fare'] other_columns = ['Name', 'Ticket'] label_columns = ['Survived'] train = train.drop(['PassengerId'], axis=1) trainbeforedummies = train.copy() trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['0'], 'Did Not Survive') trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['1'], 'Survived') train = pd.get_dummies(train, columns=categorical_columns) gender = {'male': 1, 'female': 0} train.Sex = [gender[item] for item in train.Sex] train = train.drop(['Name', 'Ticket'], axis=1) y = train.pop('Survived') x = train x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33) from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=2, weights='uniform') imputer = imputer.fit(x) x_train = imputer.transform(x_train) x_test = imputer.transform(x_test) from sklearn.preprocessing import MinMaxScaler norm = MinMaxScaler().fit(x_train) x_train_norm = norm.transform(x_train) x_test_norm = norm.transform(x_test) from sklearn.preprocessing import StandardScaler x_train_stand = x_train.copy() x_test_stand = x_test.copy() for i in [1, 2, 3, 4]: scale = StandardScaler().fit(x_train_stand[[i]]) x_train_stand[i] = scale.transform(x_train_stand[[i]]) x_test_stand[i] = scale.transform(x_test_stand[[i]]) x_train_stand_df = pd.DataFrame(x_train_stand, columns=list(x.columns)) x_train_norm_df = pd.DataFrame(x_train_norm, columns=list(x.columns)) x_train_reg_df = pd.DataFrame(x_train, columns=list(x.columns)) x_test_stand_df = pd.DataFrame(x_test_stand, columns=list(x.columns)) x_test_norm_df = pd.DataFrame(x_test_norm, columns=list(x.columns)) x_test_reg_df = pd.DataFrame(x_test, columns=list(x.columns)) x_stand_df = pd.concat([x_train_stand_df, x_test_stand_df]) x_norm_df = pd.concat([x_train_norm_df, x_test_norm_df]) x_reg_df = pd.concat([x_train_reg_df, x_test_reg_df]) x_stand_df_with_y = x_stand_df.copy() x_stand_df_with_y['Survived'] = y x_norm_df_with_y = x_norm_df.copy() x_norm_df_with_y['Survived'] = y x_reg_df_with_y = x_norm_df.copy() x_reg_df_with_y['Survived'] = y import seaborn as sns sns.countplot(data=trainbeforedummies, x='Sex', hue='Survived')
code
130022661/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn import preprocessing from sklearn.model_selection import train_test_split test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') print(train.head()) print('na after downloading data') def countna(df, column): col = pd.Series(list(df.loc[:, column])) num = col.isna().sum() print(column, ' has', num, 'na values') for column in train.columns: countna(train, column) train = train.drop(['Cabin'], axis=1) train = train.dropna(subset=['Embarked']) print('Na after fixing cabin and embark') for column in train.columns: countna(train, column) irrelevant_columns = ['PassengerId'] categorical_columns = ['Pclass', 'Embarked'] to_binary_columns = ['Sex'] numerical_columns = ['Age', 'SibSp', 'Parch', 'Fare'] other_columns = ['Name', 'Ticket'] label_columns = ['Survived'] train = train.drop(['PassengerId'], axis=1) trainbeforedummies = train.copy() trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['0'], 'Did Not Survive') trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['1'], 'Survived') train = pd.get_dummies(train, columns=categorical_columns) gender = {'male': 1, 'female': 0} train.Sex = [gender[item] for item in train.Sex] train = train.drop(['Name', 'Ticket'], axis=1) y = train.pop('Survived') x = train x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33) from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=2, weights='uniform') imputer = imputer.fit(x) x_train = imputer.transform(x_train) x_test = imputer.transform(x_test) from sklearn.preprocessing import MinMaxScaler norm = MinMaxScaler().fit(x_train) x_train_norm = norm.transform(x_train) x_test_norm = norm.transform(x_test) from sklearn.preprocessing import StandardScaler x_train_stand = x_train.copy() x_test_stand = x_test.copy() for i in [1, 2, 3, 4]: scale = StandardScaler().fit(x_train_stand[[i]]) x_train_stand[i] = scale.transform(x_train_stand[[i]]) x_test_stand[i] = scale.transform(x_test_stand[[i]])
code
130022661/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns from sklearn import preprocessing from sklearn.model_selection import train_test_split test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') def countna(df, column): col = pd.Series(list(df.loc[:, column])) num = col.isna().sum() for column in train.columns: countna(train, column) train = train.drop(['Cabin'], axis=1) train = train.dropna(subset=['Embarked']) for column in train.columns: countna(train, column) irrelevant_columns = ['PassengerId'] categorical_columns = ['Pclass', 'Embarked'] to_binary_columns = ['Sex'] numerical_columns = ['Age', 'SibSp', 'Parch', 'Fare'] other_columns = ['Name', 'Ticket'] label_columns = ['Survived'] train = train.drop(['PassengerId'], axis=1) trainbeforedummies = train.copy() trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['0'], 'Did Not Survive') trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['1'], 'Survived') train = pd.get_dummies(train, columns=categorical_columns) gender = {'male': 1, 'female': 0} train.Sex = [gender[item] for item in train.Sex] train = train.drop(['Name', 'Ticket'], axis=1) y = train.pop('Survived') x = train x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33) from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=2, weights='uniform') imputer = imputer.fit(x) x_train = imputer.transform(x_train) x_test = imputer.transform(x_test) from sklearn.preprocessing import MinMaxScaler norm = MinMaxScaler().fit(x_train) x_train_norm = norm.transform(x_train) x_test_norm = norm.transform(x_test) from sklearn.preprocessing import StandardScaler x_train_stand = x_train.copy() x_test_stand = x_test.copy() for i in [1, 2, 3, 4]: scale = StandardScaler().fit(x_train_stand[[i]]) x_train_stand[i] = scale.transform(x_train_stand[[i]]) x_test_stand[i] = scale.transform(x_test_stand[[i]]) x_train_stand_df = pd.DataFrame(x_train_stand, columns=list(x.columns)) x_train_norm_df = pd.DataFrame(x_train_norm, columns=list(x.columns)) x_train_reg_df = pd.DataFrame(x_train, columns=list(x.columns)) x_test_stand_df = pd.DataFrame(x_test_stand, columns=list(x.columns)) x_test_norm_df = pd.DataFrame(x_test_norm, columns=list(x.columns)) x_test_reg_df = pd.DataFrame(x_test, columns=list(x.columns)) x_stand_df = pd.concat([x_train_stand_df, x_test_stand_df]) x_norm_df = pd.concat([x_train_norm_df, x_test_norm_df]) x_reg_df = pd.concat([x_train_reg_df, x_test_reg_df]) x_stand_df_with_y = x_stand_df.copy() x_stand_df_with_y['Survived'] = y x_norm_df_with_y = x_norm_df.copy() x_norm_df_with_y['Survived'] = y x_reg_df_with_y = x_norm_df.copy() x_reg_df_with_y['Survived'] = y import seaborn as sns sns.kdeplot(data=trainbeforedummies, x='Age', hue='Survived', multiple='stack')
code
130022661/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns from sklearn import preprocessing from sklearn.model_selection import train_test_split test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') def countna(df, column): col = pd.Series(list(df.loc[:, column])) num = col.isna().sum() for column in train.columns: countna(train, column) train = train.drop(['Cabin'], axis=1) train = train.dropna(subset=['Embarked']) for column in train.columns: countna(train, column) irrelevant_columns = ['PassengerId'] categorical_columns = ['Pclass', 'Embarked'] to_binary_columns = ['Sex'] numerical_columns = ['Age', 'SibSp', 'Parch', 'Fare'] other_columns = ['Name', 'Ticket'] label_columns = ['Survived'] train = train.drop(['PassengerId'], axis=1) trainbeforedummies = train.copy() trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['0'], 'Did Not Survive') trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['1'], 'Survived') train = pd.get_dummies(train, columns=categorical_columns) gender = {'male': 1, 'female': 0} train.Sex = [gender[item] for item in train.Sex] train = train.drop(['Name', 'Ticket'], axis=1) y = train.pop('Survived') x = train x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33) from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=2, weights='uniform') imputer = imputer.fit(x) x_train = imputer.transform(x_train) x_test = imputer.transform(x_test) from sklearn.preprocessing import MinMaxScaler norm = MinMaxScaler().fit(x_train) x_train_norm = norm.transform(x_train) x_test_norm = norm.transform(x_test) from sklearn.preprocessing import StandardScaler x_train_stand = x_train.copy() x_test_stand = x_test.copy() for i in [1, 2, 3, 4]: scale = StandardScaler().fit(x_train_stand[[i]]) x_train_stand[i] = scale.transform(x_train_stand[[i]]) x_test_stand[i] = scale.transform(x_test_stand[[i]]) x_train_stand_df = pd.DataFrame(x_train_stand, columns=list(x.columns)) x_train_norm_df = pd.DataFrame(x_train_norm, columns=list(x.columns)) x_train_reg_df = pd.DataFrame(x_train, columns=list(x.columns)) x_test_stand_df = pd.DataFrame(x_test_stand, columns=list(x.columns)) x_test_norm_df = pd.DataFrame(x_test_norm, columns=list(x.columns)) x_test_reg_df = pd.DataFrame(x_test, columns=list(x.columns)) x_stand_df = pd.concat([x_train_stand_df, x_test_stand_df]) x_norm_df = pd.concat([x_train_norm_df, x_test_norm_df]) x_reg_df = pd.concat([x_train_reg_df, x_test_reg_df]) x_stand_df_with_y = x_stand_df.copy() x_stand_df_with_y['Survived'] = y x_norm_df_with_y = x_norm_df.copy() x_norm_df_with_y['Survived'] = y x_reg_df_with_y = x_norm_df.copy() x_reg_df_with_y['Survived'] = y import seaborn as sns sns.countplot(x='Embarked', data=trainbeforedummies)
code
130022661/cell_10
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns from sklearn import preprocessing from sklearn.model_selection import train_test_split test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') def countna(df, column): col = pd.Series(list(df.loc[:, column])) num = col.isna().sum() for column in train.columns: countna(train, column) train = train.drop(['Cabin'], axis=1) train = train.dropna(subset=['Embarked']) for column in train.columns: countna(train, column) irrelevant_columns = ['PassengerId'] categorical_columns = ['Pclass', 'Embarked'] to_binary_columns = ['Sex'] numerical_columns = ['Age', 'SibSp', 'Parch', 'Fare'] other_columns = ['Name', 'Ticket'] label_columns = ['Survived'] train = train.drop(['PassengerId'], axis=1) trainbeforedummies = train.copy() trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['0'], 'Did Not Survive') trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['1'], 'Survived') train = pd.get_dummies(train, columns=categorical_columns) gender = {'male': 1, 'female': 0} train.Sex = [gender[item] for item in train.Sex] train = train.drop(['Name', 'Ticket'], axis=1) y = train.pop('Survived') x = train x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33) from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=2, weights='uniform') imputer = imputer.fit(x) x_train = imputer.transform(x_train) x_test = imputer.transform(x_test) from sklearn.preprocessing import MinMaxScaler norm = MinMaxScaler().fit(x_train) x_train_norm = norm.transform(x_train) x_test_norm = norm.transform(x_test) from sklearn.preprocessing import StandardScaler x_train_stand = x_train.copy() x_test_stand = x_test.copy() for i in [1, 2, 3, 4]: scale = StandardScaler().fit(x_train_stand[[i]]) x_train_stand[i] = scale.transform(x_train_stand[[i]]) x_test_stand[i] = scale.transform(x_test_stand[[i]]) x_train_stand_df = pd.DataFrame(x_train_stand, columns=list(x.columns)) x_train_norm_df = pd.DataFrame(x_train_norm, columns=list(x.columns)) x_train_reg_df = pd.DataFrame(x_train, columns=list(x.columns)) x_test_stand_df = pd.DataFrame(x_test_stand, columns=list(x.columns)) x_test_norm_df = pd.DataFrame(x_test_norm, columns=list(x.columns)) x_test_reg_df = pd.DataFrame(x_test, columns=list(x.columns)) x_stand_df = pd.concat([x_train_stand_df, x_test_stand_df]) x_norm_df = pd.concat([x_train_norm_df, x_test_norm_df]) x_reg_df = pd.concat([x_train_reg_df, x_test_reg_df]) x_stand_df_with_y = x_stand_df.copy() x_stand_df_with_y['Survived'] = y x_norm_df_with_y = x_norm_df.copy() x_norm_df_with_y['Survived'] = y x_reg_df_with_y = x_norm_df.copy() x_reg_df_with_y['Survived'] = y import seaborn as sns sns.kdeplot(data=x_reg_df, x='Fare')
code
130022661/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.impute import KNNImputer from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns from sklearn import preprocessing from sklearn.model_selection import train_test_split test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') def countna(df, column): col = pd.Series(list(df.loc[:, column])) num = col.isna().sum() for column in train.columns: countna(train, column) train = train.drop(['Cabin'], axis=1) train = train.dropna(subset=['Embarked']) for column in train.columns: countna(train, column) irrelevant_columns = ['PassengerId'] categorical_columns = ['Pclass', 'Embarked'] to_binary_columns = ['Sex'] numerical_columns = ['Age', 'SibSp', 'Parch', 'Fare'] other_columns = ['Name', 'Ticket'] label_columns = ['Survived'] train = train.drop(['PassengerId'], axis=1) trainbeforedummies = train.copy() trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['0'], 'Did Not Survive') trainbeforedummies['Survived'] = trainbeforedummies['Survived'].replace(['1'], 'Survived') train = pd.get_dummies(train, columns=categorical_columns) gender = {'male': 1, 'female': 0} train.Sex = [gender[item] for item in train.Sex] train = train.drop(['Name', 'Ticket'], axis=1) y = train.pop('Survived') x = train x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33) from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=2, weights='uniform') imputer = imputer.fit(x) x_train = imputer.transform(x_train) x_test = imputer.transform(x_test) from sklearn.preprocessing import MinMaxScaler norm = MinMaxScaler().fit(x_train) x_train_norm = norm.transform(x_train) x_test_norm = norm.transform(x_test) from sklearn.preprocessing import StandardScaler x_train_stand = x_train.copy() x_test_stand = x_test.copy() for i in [1, 2, 3, 4]: scale = StandardScaler().fit(x_train_stand[[i]]) x_train_stand[i] = scale.transform(x_train_stand[[i]]) x_test_stand[i] = scale.transform(x_test_stand[[i]]) x_train_stand_df = pd.DataFrame(x_train_stand, columns=list(x.columns)) x_train_norm_df = pd.DataFrame(x_train_norm, columns=list(x.columns)) x_train_reg_df = pd.DataFrame(x_train, columns=list(x.columns)) x_test_stand_df = pd.DataFrame(x_test_stand, columns=list(x.columns)) x_test_norm_df = pd.DataFrame(x_test_norm, columns=list(x.columns)) x_test_reg_df = pd.DataFrame(x_test, columns=list(x.columns)) x_stand_df = pd.concat([x_train_stand_df, x_test_stand_df]) x_norm_df = pd.concat([x_train_norm_df, x_test_norm_df]) x_reg_df = pd.concat([x_train_reg_df, x_test_reg_df]) x_stand_df_with_y = x_stand_df.copy() x_stand_df_with_y['Survived'] = y x_norm_df_with_y = x_norm_df.copy() x_norm_df_with_y['Survived'] = y x_reg_df_with_y = x_norm_df.copy() x_reg_df_with_y['Survived'] = y import seaborn as sns sns.countplot(x='Parch', data=x_reg_df)
code