Datasets:
File size: 5,946 Bytes
cc12d95 ddad039 cc12d95 ddad039 cc12d95 ddad039 73de627 16bcfdf ddad039 73de627 16bcfdf b07027d 16bcfdf 73de627 cc12d95 ddad039 386abf8 cc12d95 73de627 ddad039 cc12d95 73de627 ddad039 73de627 cc12d95 73de627 cc12d95 386abf8 cc12d95 73de627 386abf8 73de627 cc12d95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO"""
from collections import defaultdict
from pathlib import Path
import datasets
import pyarrow as pa
import pyarrow.parquet as pq
from datasets import Sequence, Value
from datasets.config import PYARROW_VERSION
from datasets.utils.logging import get_logger
from huggingface_hub import hf_api
logger = get_logger(__name__)
if PYARROW_VERSION.major <= 6:
msg = f"pyarrow version >= 7.0.0 required for this loading script, you have {PYARROW_VERSION}"
logger.warning(msg)
raise RuntimeError(msg)
_DESCRIPTION = "TODO"
_HOMEPAGE = "TODO"
api = hf_api.HfApi()
files = api.list_repo_files("biglam/europeana_newspapers", repo_type="dataset")
data = defaultdict(dict)
parquet_files = (f for f in files if f.endswith(".parquet"))
for file in parquet_files:
lang, decade = Path(file).stem.split("-")
data[lang].update({decade: file})
_DATA = dict(data)
_LANG_CONFIGS = set(_DATA.keys())
class EuropeanaNewspapersConfig(datasets.BuilderConfig):
"""BuilderConfig for the Europeana Newspapers dataset."""
def __init__(
self, *args, languages=None, min_decade=None, max_decade=None, **kwargs
):
"""BuilderConfig for the Europeana Newspapers dataset.
Args:
languages (:obj:`List[str]`): List of languages to load.
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(
*args,
name="+".join(languages),
**kwargs,
)
for lang in languages:
if lang not in _LANG_CONFIGS:
raise ValueError(
f"{lang} not a valid language key for this dataset, valid keys are {_LANG_CONFIGS}"
)
self.languages = languages
self.min_decade = min_decade
self.max_decade = max_decade
class EuropeanaNewspapers(datasets.GeneratorBasedBuilder):
"""TODO."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIG_CLASS = EuropeanaNewspapersConfig
BUILDER_CONFIGS = [
EuropeanaNewspapersConfig(languages=[lang]) for lang in _LANG_CONFIGS
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": Value(dtype="string"),
"mean_ocr": Value(dtype="float64"),
"std_ocr": Value(dtype="float64"),
"bounding_boxes": Sequence(
feature=Sequence(
feature=Value(dtype="float64", id=None),
length=-1,
),
),
"title": Value(dtype="string"),
"date": Value(dtype="string"),
"language": Sequence(
feature=Value(dtype="string", id=None),
),
"item_iiif_url": Value(
dtype="string",
),
# "multi_language": Value(dtype="bool"),
"issue_uri": Value(dtype="string"),
"id": Value(dtype="string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license="Multiple: see the 'license' field of each sample.",
)
def _split_generators(self, dl_manager):
# parquet_files = list(Path(".").rglob("*.parquet"))
languages = self.config.languages
min_decade = self.config.min_decade
max_decade = self.config.max_decade
data_files = []
for language in languages:
for decade, file in _DATA[language].items():
decade = int(decade)
if max_decade is None and min_decade is None:
data_files.append(file)
if (
max_decade is not None
and min_decade is not None
and min_decade <= decade <= max_decade
):
data_files.append(file)
if (
min_decade is not None
and max_decade is None
and decade >= min_decade
):
data_files.append(file)
if (
min_decade is None
and max_decade is not None
and decade <= max_decade
):
data_files.append(file)
files = dl_manager.download(data_files)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": files,
},
),
]
def _generate_examples(self, files):
key = 0
for file in files:
with open(file, "rb") as f:
parquet_file = pq.ParquetFile(f)
for record_batch in parquet_file.iter_batches(batch_size=10_000):
pa_table = pa.Table.from_batches([record_batch])
rows = pa_table.to_pylist()
for row in rows:
row.pop("multi_language")
yield key, row
key += 1
|