File size: 3,313 Bytes
8f18eef
 
 
 
 
 
 
 
 
 
 
 
 
 
16651ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f18eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
language: en
license: unknown
task_categories:
- change-detection
paperswithcode_id: oscd
pretty_name: OSCD MSI
tags:
- remote-sensing
- earth-observation
- geospatial
- satellite-imagery
- change-detection
- sentinel-2
dataset_info:
  features:
  - name: image1
    dtype:
      array3_d:
        dtype: uint16
        shape:
        - 13
        - 10000
        - 10000
  - name: image2
    dtype:
      array3_d:
        dtype: uint16
        shape:
        - 13
        - 10000
        - 10000
  - name: mask
    dtype: image
  splits:
  - name: train
    num_bytes: 365977532.0
    num_examples: 14
  - name: test
    num_bytes: 172930908.0
    num_examples: 10
  download_size: 397786113
  dataset_size: 538908440.0
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
---

# OSCD MSI

<!-- Dataset thumbnail -->
![OSCD MSI](./thumbnail.png)

<!-- Provide a quick summary of the dataset. -->
The [Onera Satellite Change Detection](https://rcdaudt.github.io/oscd/) (OSCD) dataset is a change detection dataset that focuses on multispectral (MS) images taken by the [ESA Sentinel-2 satellite](https://sentinel.esa.int/web/sentinel/missions/sentinel-2). This dataset provides 24 registered image pairs from various continents, captured between the years 2015 and 2018. Along with the image pairs, the dataset includes binary change masks that highlight areas where changes have occurred. Pixel-level change ground truth is provided for all 14 training and 10 test image pairs. The annotated changes focus on urban changes, such as new buildings or new roads. These data can be used for training and setting parameters of change detection algorithms.
- **Paper:** https://arxiv.org/abs/1810.08468
- **Homepage:** https://github.com/phelber/OSCD

## Description

<!-- Provide a longer summary of what this dataset is. -->

The dataset is available in two versions: RGB only and all **13 MSI Bands** (this repo) [Multispectral (MS) Sentinel-2 bands](https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial).

- **Total Number of Images**: 24
- **Bands**: 13 (MSI)
- **Image Size**: 10000x10000
- **Image Resolution**: 10m
- **Land Cover Classes**: 2
- **Classes**: no change, change
- **Source**: Sentinel-2


## Usage

To use this dataset, simply use `datasets.load_dataset("blanchon/OSCD_MSI")`.
<!-- Provide any additional information on how to use this dataset. -->
```python
from datasets import load_dataset
OSCD_MSI = load_dataset("blanchon/OSCD_MSI")
```

## Citation 

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
If you use the EuroSAT dataset in your research, please consider citing the following publication:


```bibtex
@article{daudt2018urban,
  title     = {Urban Change Detection for Multispectral Earth Observation Using Convolutional Neural Networks},
  author    = {R. C. Daudt and B. L. Saux and Alexandre Boulch and Y. Gousseau},
  journal   = {IEEE International Geoscience and Remote Sensing Symposium},
  year      = {2018},
  doi       = {10.1109/IGARSS.2018.8518015},
  bibSource = {Semantic Scholar https://www.semanticscholar.org/paper/18755de13d2d868255bbf332fa80ec218163c74e}
}
```