|
|
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
from dataclasses import dataclass |
|
|
|
import datasets |
|
import json |
|
import xml.etree.ElementTree as ET |
|
|
|
|
|
_CITATION = """\ |
|
@article{nuranti2022predicting, |
|
title={Predicting the Category and the Length of Punishment in Indonesian Courts Based on Previous Court Decision Documents}, |
|
author={Nuranti, Eka Qadri and Yulianti, Evi and Husin, Husna Sarirah}, |
|
journal={Computers}, |
|
volume={11}, |
|
number={6}, |
|
pages={88}, |
|
year={2022}, |
|
publisher={Multidisciplinary Digital Publishing Institute} |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["id"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "indo_law" |
|
|
|
_DESCRIPTION = """\ |
|
This study presents predictions of first-level judicial decisions by utilizing a collection of Indonesian court decision documents. |
|
We propose using multi-level learning, namely, CNN+attention, using decision document sections as features to predict the category and the length of punishment in Indonesian courts. |
|
Our results demonstrate that the decision document sections that strongly affected the accuracy of the prediction model were prosecution history, facts, legal facts, and legal considerations. |
|
""" |
|
|
|
_HOMEPAGE = "" |
|
|
|
_LICENSE = "Unknown" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://github.com/ir-nlp-csui/indo-law/zipball/master", |
|
} |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
|
|
|
|
@dataclass |
|
class IndoLawConfig(datasets.BuilderConfig): |
|
|
|
name: str = None |
|
version: datasets.Version = None |
|
description: str = None |
|
schema: str = None |
|
subset_id: str = None |
|
|
|
class IndoLaw(datasets.GeneratorBasedBuilder): |
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
|
|
|
|
_LABELS = ["pidana-khusus", "pidana-umum"] |
|
|
|
BUILDER_CONFIGS = [ |
|
IndoLawConfig( |
|
name="indo_law_source", |
|
version=SOURCE_VERSION, |
|
description="Indo-Law source schema", |
|
schema="source", |
|
subset_id="indo_law", |
|
), |
|
IndoLawConfig( |
|
name="indo_law_nusantara_text", |
|
version=SOURCE_VERSION, |
|
description="Indo-Law Nusantara schema", |
|
schema="nusantara_text", |
|
subset_id="indo_law", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "indo_law_source" |
|
|
|
def _get_features(self, label_names): |
|
return datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=label_names), |
|
} |
|
) |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"klasifikasi": datasets.Value("string"), |
|
"sub_klasifikasi": datasets.Value("string"), |
|
"paragraphs": datasets.Sequence({ |
|
"tag": datasets.Value("string"), |
|
"value": datasets.Value("string"), |
|
}), |
|
} |
|
) |
|
|
|
elif self.config.schema == "nusantara_text": |
|
features = self._get_features(self._LABELS) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[ |
|
datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
data_dir = os.path.join(data_dir, "ir-nlp-csui-indo-law-6734033", "dataset") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
files = os.listdir(filepath) |
|
|
|
results = [] |
|
|
|
for file in files: |
|
data = self._parse_file(os.path.join(filepath, file)) |
|
results.append(data) |
|
|
|
if self.config.schema == "source": |
|
key = 0 |
|
for result in results: |
|
example = { |
|
"id": result["id"], |
|
"klasifikasi": result["klasifikasi"], |
|
"sub_klasifikasi": result["klasifikasi"], |
|
"paragraphs": [], |
|
} |
|
for tag in result["paragraphs"]: |
|
example["paragraphs"].append({ |
|
"tag": tag, |
|
"value": result["paragraphs"][tag] |
|
}) |
|
yield key, example |
|
key += 1 |
|
|
|
elif self.config.schema == "nusantara_text": |
|
key = 0 |
|
for result in results: |
|
example = { |
|
"id": result["id"], |
|
"text": json.dumps(result["paragraphs"]), |
|
"label": result["klasifikasi"], |
|
} |
|
yield key, example |
|
key += 1 |
|
|
|
def _parse_file(self, file_path): |
|
root = ET.parse(file_path).getroot() |
|
|
|
data = { |
|
"id": root.attrib["id"], |
|
"klasifikasi": root.attrib["klasifikasi"], |
|
"sub_klasifikasi": root.attrib["sub_klasifikasi"], |
|
"paragraphs": {} |
|
} |
|
|
|
for child in root: |
|
data["paragraphs"].update({ |
|
child.tag: child.text |
|
}) |
|
|
|
return data |
|
|
|
|