Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
File size: 1,744 Bytes
000307a
5011b09
 
 
 
 
0cf2776
5011b09
 
 
b347fcf
 
5011b09
 
 
 
 
 
 
 
 
 
 
 
000307a
 
 
 
28bfca4
000307a
28bfca4
000307a
 
 
28bfca4
000307a
28bfca4
000307a
 
 
28bfca4
000307a
28bfca4
000307a
08e9bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
dataset_info:
  features:
    - name: id
      dtype: string
    - name: instance_id
      dtype: int64
    - name: question
      dtype: string
    - name: answer
      list:
        dtype: string
    - name: A
      dtype: string
    - name: B
      dtype: string
    - name: C
      dtype: string
    - name: D
      dtype: string
    - name: category
      dtype: string
    - name: img
      dtype: image
configs:
- config_name: 1_correct
  data_files:
  - split: validation
    path: "1_correct/validation/0000.parquet"
  - split: test
    path: "1_correct/test/0000.parquet"
- config_name: 1_correct_var
  data_files:
  - split: validation
    path: "1_correct_var/validation/0000.parquet"
  - split: test
    path: "1_correct_var/test/0000.parquet"
- config_name: n_correct
  data_files:
  - split: validation
    path: "n_correct/validation/0000.parquet"
  - split: test
    path: "n_correct/test/0000.parquet"
---
 # DARE

DARE (Diverse Visual Question Answering with Robustness Evaluation) is a carefully created and curated multiple-choice VQA benchmark.
DARE evaluates VLM performance on five diverse categories and includes four robustness-oriented evaluations based on the variations of:
- prompts
- the subsets of answer options
- the output format
- the number of correct answers.

The validation split of the dataset contains images, questions, answer options, and correct answers. We are not publishing the correct answers for the test split to prevent contamination.

## Load the Dataset

To use the dataset use the huggingface datasets library: 

```
from datasets import load_dataset

# Load the dataset
subset = "1_correct" # Change to the subset that you want to use
dataset = load_dataset("hSterz/DARE", subset)
```