File size: 43,621 Bytes
586ab0a
 
 
 
 
 
 
 
 
 
 
 
 
19bdf2e
5ee7733
7b21041
817babe
401432d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee7733
 
79d6354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d54dd4
79d6354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586ab0a
a7090e1
 
72fe917
 
a7090e1
 
 
 
 
3b7f393
 
1d252ef
 
 
 
 
 
1588420
1d252ef
 
 
 
401432d
 
1d252ef
401432d
 
 
 
1d252ef
401432d
 
1d252ef
401432d
 
1d252ef
401432d
 
1d252ef
 
 
3b7f393
dedccd2
a7090e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0332273
a7090e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b94798c
a7090e1
 
 
0332273
 
a7090e1
 
b94798c
a7090e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2b8b7e
3b7f393
f2b8b7e
8d3636b
 
 
be7767b
f2b8b7e
 
45280d3
f2b8b7e
 
 
 
 
9d54dd4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
---
language: 
- en
- es
pretty_name: " 💾🏋️💾 DataBench 💾🏋️💾"
tags:
- table-question-answering
- table
- qa
license: mit
task_categories:
- table-question-answering
- question-answering
default: qa
configs:
- config_name: qa
  data_files:
    - data/001_Forbes/qa.parquet
    - data/002_Titanic/qa.parquet
    - data/003_Love/qa.parquet
    - data/004_Taxi/qa.parquet
    - data/005_NYC/qa.parquet
    - data/006_London/qa.parquet
    - data/007_Fifa/qa.parquet
    - data/008_Tornados/qa.parquet
    - data/009_Central/qa.parquet
    - data/010_ECommerce/qa.parquet
    - data/011_SF/qa.parquet
    - data/012_Heart/qa.parquet
    - data/013_Roller/qa.parquet
    - data/014_Airbnb/qa.parquet
    - data/015_Food/qa.parquet
    - data/016_Holiday/qa.parquet
    - data/017_Hacker/qa.parquet
    - data/018_Staff/qa.parquet
    - data/019_Aircraft/qa.parquet
    - data/020_Real/qa.parquet
    - data/021_Telco/qa.parquet
    - data/022_Airbnbs/qa.parquet
    - data/023_Climate/qa.parquet
    - data/024_Salary/qa.parquet
    - data/025_Data/qa.parquet
    - data/026_Predicting/qa.parquet
    - data/027_Supermarket/qa.parquet
    - data/028_Predict/qa.parquet
    - data/029_NYTimes/qa.parquet
    - data/030_Professionals/qa.parquet
    - data/031_Trustpilot/qa.parquet
    - data/032_Delicatessen/qa.parquet
    - data/033_Employee/qa.parquet
    - data/034_World/qa.parquet
    - data/035_Billboard/qa.parquet
    - data/036_US/qa.parquet
    - data/037_Ted/qa.parquet
    - data/038_Stroke/qa.parquet
    - data/039_Happy/qa.parquet
    - data/040_Speed/qa.parquet
    - data/041_Airline/qa.parquet
    - data/042_Predict/qa.parquet
    - data/043_Predict/qa.parquet
    - data/044_IMDb/qa.parquet
    - data/045_Predict/qa.parquet
    - data/046_120/qa.parquet
    - data/047_Bank/qa.parquet
    - data/048_Data/qa.parquet
    - data/049_Boris/qa.parquet
    - data/050_ING/qa.parquet
    - data/051_Pokemon/qa.parquet
    - data/052_Professional/qa.parquet
    - data/053_Patents/qa.parquet
    - data/054_Joe/qa.parquet
    - data/055_German/qa.parquet
    - data/056_Emoji/qa.parquet
    - data/057_Spain/qa.parquet
    - data/058_US/qa.parquet
    - data/059_Second/qa.parquet
    - data/060_Bakery/qa.parquet
    - data/061_Disneyland/qa.parquet
    - data/062_Trump/qa.parquet
    - data/063_Influencers/qa.parquet
    - data/064_Clustering/qa.parquet
    - data/065_RFM/qa.parquet
#     - split: 001_Forbes
#       path: data/001_Forbes/qa.parquet
#     - split: 002_Titanic
#       path: data/002_Titanic/qa.parquet
#     - split: 003_Love
#       path: data/003_Love/qa.parquet
#     - split: 004_Taxi
#       path: data/004_Taxi/qa.parquet
#     - split: 005_NYC
#       path: data/005_NYC/qa.parquet
#     - split: 006_London
#       path: data/006_London/qa.parquet
#     - split: 007_Fifa
#       path: data/007_Fifa/qa.parquet
#     - split: 008_Tornados
#       path: data/008_Tornados/qa.parquet
#     - split: 009_Central
#       path: data/009_Central/qa.parquet
#     - split: 010_ECommerce
#       path: data/010_ECommerce/qa.parquet
#     - split: 011_SF
#       path: data/011_SF/qa.parquet
#     - split: 012_Heart
#       path: data/012_Heart/qa.parquet
#     - split: 013_Roller
#       path: data/013_Roller/qa.parquet
#     - split: 014_Airbnb
#       path: data/014_Airbnb/qa.parquet
#     - split: 015_Food
#       path: data/015_Food/qa.parquet
#     - split: 016_Holiday
#       path: data/016_Holiday/qa.parquet
#     - split: 017_Hacker
#       path: data/017_Hacker/qa.parquet
#     - split: 018_Staff
#       path: data/018_Staff/qa.parquet
#     - split: 019_Aircraft
#       path: data/019_Aircraft/qa.parquet
#     - split: 020_Real
#       path: data/020_Real/qa.parquet
#     - split: 021_Telco
#       path: data/021_Telco/qa.parquet
#     - split: 022_Airbnbs
#       path: data/022_Airbnbs/qa.parquet
#     - split: 023_Climate
#       path: data/023_Climate/qa.parquet
#     - split: 024_Salary
#       path: data/024_Salary/qa.parquet
#     - split: 025_Data
#       path: data/025_Data/qa.parquet
#     - split: 026_Predicting
#       path: data/026_Predicting/qa.parquet
#     - split: 027_Supermarket
#       path: data/027_Supermarket/qa.parquet
#     - split: 028_Predict
#       path: data/028_Predict/qa.parquet
#     - split: 029_NYTimes
#       path: data/029_NYTimes/qa.parquet
#     - split: 030_Professionals
#       path: data/030_Professionals/qa.parquet
#     - split: 031_Trustpilot
#       path: data/031_Trustpilot/qa.parquet
#     - split: 032_Delicatessen
#       path: data/032_Delicatessen/qa.parquet
#     - split: 033_Employee
#       path: data/033_Employee/qa.parquet
#     - split: 034_World
#       path: data/034_World/qa.parquet
#     - split: 035_Billboard
#       path: data/035_Billboard/qa.parquet
#     - split: 036_US
#       path: data/036_US/qa.parquet
#     - split: 037_Ted
#       path: data/037_Ted/qa.parquet
#     - split: 038_Stroke
#       path: data/038_Stroke/qa.parquet
#     - split: 039_Happy
#       path: data/039_Happy/qa.parquet
#     - split: 040_Speed
#       path: data/040_Speed/qa.parquet
#     - split: 041_Airline
#       path: data/041_Airline/qa.parquet
#     - split: 042_Predict
#       path: data/042_Predict/qa.parquet
#     - split: 043_Predict
#       path: data/043_Predict/qa.parquet
#     - split: 044_IMDb
#       path: data/044_IMDb/qa.parquet
#     - split: 045_Predict
#       path: data/045_Predict/qa.parquet
#     - split: "046_120"
#       path: data/046_120/qa.parquet
#     - split: 047_Bank
#       path: data/047_Bank/qa.parquet
#     - split: 048_Data
#       path: data/048_Data/qa.parquet
#     - split: 049_Boris
#       path: data/049_Boris/qa.parquet
#     - split: 050_ING
#       path: data/050_ING/qa.parquet
#     - split: 051_Pokemon
#       path: data/051_Pokemon/qa.parquet
#     - split: 052_Professional
#       path: data/052_Professional/qa.parquet
#     - split: 053_Patents
#       path: data/053_Patents/qa.parquet
#     - split: 054_Joe
#       path: data/054_Joe/qa.parquet
#     - split: 055_German
#       path: data/055_German/qa.parquet
#     - split: 056_Emoji
#       path: data/056_Emoji/qa.parquet
#     - split: 057_Spain
#       path: data/057_Spain/qa.parquet
#     - split: 058_US
#       path: data/058_US/qa.parquet
#     - split: 059_Second
#       path: data/059_Second/qa.parquet
#     - split: 060_Bakery
#       path: data/060_Bakery/qa.parquet
#     - split: 061_Disneyland
#       path: data/061_Disneyland/qa.parquet
#     - split: 062_Trump
#       path: data/062_Trump/qa.parquet
#     - split: 063_Influencers
#       path: data/063_Influencers/qa.parquet
#     - split: 064_Clustering
#       path: data/064_Clustering/qa.parquet
#     - split: 065_RFM
#       path: data/065_RFM/qa.parquet
# - config_name: 001_Forbes
#   data_files:
#     - split: full
#       path: data/001_Forbes/all.parquet
#     - split: lite
#       path: data/001_Forbes/sample.parquet
# - config_name: 002_Titanic
#   data_files:
#     - split: full
#       path: data/002_Titanic/all.parquet
#     - split: lite
#       path: data/002_Titanic/sample.parquet
# - config_name: 003_Love
#   data_files:
#     - split: full
#       path: data/003_Love/all.parquet
#     - split: lite
#       path: data/003_Love/sample.parquet
# - config_name: 004_Taxi
#   data_files:
#     - split: full
#       path: data/004_Taxi/all.parquet
#     - split: lite
#       path: data/004_Taxi/sample.parquet
# - config_name: 005_NYC
#   data_files:
#     - split: full
#       path: data/005_NYC/all.parquet
#     - split: lite
#       path: data/005_NYC/sample.parquet
# - config_name: 006_London
#   data_files:
#     - split: full
#       path: data/006_London/all.parquet
#     - split: lite
#       path: data/006_London/sample.parquet
# - config_name: 007_Fifa
#   data_files:
#     - split: full
#       path: data/007_Fifa/all.parquet
#     - split: lite
#       path: data/007_Fifa/sample.parquet
# - config_name: 008_Tornados
#   data_files:
#     - split: full
#       path: data/008_Tornados/all.parquet
#     - split: lite
#       path: data/008_Tornados/sample.parquet
# - config_name: 009_Central
#   data_files:
#     - split: full
#       path: data/009_Central/all.parquet
#     - split: lite
#       path: data/009_Central/sample.parquet
# - config_name: 010_ECommerce
#   data_files:
#     - split: full
#       path: data/010_ECommerce/all.parquet
#     - split: lite
#       path: data/010_ECommerce/sample.parquet
# - config_name: 011_SF
#   data_files:
#     - split: full
#       path: data/011_SF/all.parquet
#     - split: lite
#       path: data/011_SF/sample.parquet
# - config_name: 012_Heart
#   data_files:
#     - split: full
#       path: data/012_Heart/all.parquet
#     - split: lite
#       path: data/012_Heart/sample.parquet
# - config_name: 013_Roller
#   data_files:
#     - split: full
#       path: data/013_Roller/all.parquet
#     - split: lite
#       path: data/013_Roller/sample.parquet
# - config_name: 014_Airbnb
#   data_files:
#     - split: full
#       path: data/014_Airbnb/all.parquet
#     - split: lite
#       path: data/014_Airbnb/sample.parquet
# - config_name: 015_Food
#   data_files:
#     - split: full
#       path: data/015_Food/all.parquet
#     - split: lite
#       path: data/015_Food/sample.parquet
# - config_name: 016_Holiday
#   data_files:
#     - split: full
#       path: data/016_Holiday/all.parquet
#     - split: lite
#       path: data/016_Holiday/sample.parquet
# - config_name: 017_Hacker
#   data_files:
#     - split: full
#       path: data/017_Hacker/all.parquet
#     - split: lite
#       path: data/017_Hacker/sample.parquet
# - config_name: 018_Staff
#   data_files:
#     - split: full
#       path: data/018_Staff/all.parquet
#     - split: lite
#       path: data/018_Staff/sample.parquet
# - config_name: 019_Aircraft
#   data_files:
#     - split: full
#       path: data/019_Aircraft/all.parquet
#     - split: lite
#       path: data/019_Aircraft/sample.parquet
# - config_name: 020_Real
#   data_files:
#     - split: full
#       path: data/020_Real/all.parquet
#     - split: lite
#       path: data/020_Real/sample.parquet
# - config_name: 021_Telco
#   data_files:
#     - split: full
#       path: data/021_Telco/all.parquet
#     - split: lite
#       path: data/021_Telco/sample.parquet
# - config_name: 022_Airbnbs
#   data_files:
#     - split: full
#       path: data/022_Airbnbs/all.parquet
#     - split: lite
#       path: data/022_Airbnbs/sample.parquet
# - config_name: 023_Climate
#   data_files:
#     - split: full
#       path: data/023_Climate/all.parquet
#     - split: lite
#       path: data/023_Climate/sample.parquet
# - config_name: 024_Salary
#   data_files:
#     - split: full
#       path: data/024_Salary/all.parquet
#     - split: lite
#       path: data/024_Salary/sample.parquet
# - config_name: 025_Data
#   data_files:
#     - split: full
#       path: data/025_Data/all.parquet
#     - split: lite
#       path: data/025_Data/sample.parquet
# - config_name: 026_Predicting
#   data_files:
#     - split: full
#       path: data/026_Predicting/all.parquet
#     - split: lite
#       path: data/026_Predicting/sample.parquet
# - config_name: 027_Supermarket
#   data_files:
#     - split: full
#       path: data/027_Supermarket/all.parquet
#     - split: lite
#       path: data/027_Supermarket/sample.parquet
# - config_name: 028_Predict
#   data_files:
#     - split: full
#       path: data/028_Predict/all.parquet
#     - split: lite
#       path: data/028_Predict/sample.parquet
# - config_name: 029_NYTimes
#   data_files:
#     - split: full
#       path: data/029_NYTimes/all.parquet
#     - split: lite
#       path: data/029_NYTimes/sample.parquet
# - config_name: 030_Professionals
#   data_files:
#     - split: full
#       path: data/030_Professionals/all.parquet
#     - split: lite
#       path: data/030_Professionals/sample.parquet
# - config_name: 031_Trustpilot
#   data_files:
#     - split: full
#       path: data/031_Trustpilot/all.parquet
#     - split: lite
#       path: data/031_Trustpilot/sample.parquet
# - config_name: 032_Delicatessen
#   data_files:
#     - split: full
#       path: data/032_Delicatessen/all.parquet
#     - split: lite
#       path: data/032_Delicatessen/sample.parquet
# - config_name: 033_Employee
#   data_files:
#     - split: full
#       path: data/033_Employee/all.parquet
#     - split: lite
#       path: data/033_Employee/sample.parquet
# - config_name: 034_World
#   data_files:
#     - split: full
#       path: data/034_World/all.parquet
#     - split: lite
#       path: data/034_World/sample.parquet
# - config_name: 035_Billboard
#   data_files:
#     - split: full
#       path: data/035_Billboard/all.parquet
#     - split: lite
#       path: data/035_Billboard/sample.parquet
# - config_name: 036_US
#   data_files:
#     - split: full
#       path: data/036_US/all.parquet
#     - split: lite
#       path: data/036_US/sample.parquet
# - config_name: 037_Ted
#   data_files:
#     - split: full
#       path: data/037_Ted/all.parquet
#     - split: lite
#       path: data/037_Ted/sample.parquet
# - config_name: 038_Stroke
#   data_files:
#     - split: full
#       path: data/038_Stroke/all.parquet
#     - split: lite
#       path: data/038_Stroke/sample.parquet
# - config_name: 039_Happy
#   data_files:
#     - split: full
#       path: data/039_Happy/all.parquet
#     - split: lite
#       path: data/039_Happy/sample.parquet
# - config_name: 040_Speed
#   data_files:
#     - split: full
#       path: data/040_Speed/all.parquet
#     - split: lite
#       path: data/040_Speed/sample.parquet
# - config_name: 041_Airline
#   data_files:
#     - split: full
#       path: data/041_Airline/all.parquet
#     - split: lite
#       path: data/041_Airline/sample.parquet
# - config_name: 042_Predict
#   data_files:
#     - split: full
#       path: data/042_Predict/all.parquet
#     - split: lite
#       path: data/042_Predict/sample.parquet
# - config_name: 043_Predict
#   data_files:
#     - split: full
#       path: data/043_Predict/all.parquet
#     - split: lite
#       path: data/043_Predict/sample.parquet
# - config_name: 044_IMDb
#   data_files:
#     - split: full
#       path: data/044_IMDb/all.parquet
#     - split: lite
#       path: data/044_IMDb/sample.parquet
# - config_name: 045_Predict
#   data_files:
#     - split: full
#       path: data/045_Predict/all.parquet
#     - split: lite
#       path: data/045_Predict/sample.parquet
# - config_name: "046_120"
#   data_files:
#     - split: full
#       path: data/046_120/all.parquet
#     - split: lite
#       path: data/046_120/sample.parquet
# - config_name: 047_Bank
#   data_files:
#     - split: full
#       path: data/047_Bank/all.parquet
#     - split: lite
#       path: data/047_Bank/sample.parquet
# - config_name: 048_Data
#   data_files:
#     - split: full
#       path: data/048_Data/all.parquet
#     - split: lite
#       path: data/048_Data/sample.parquet
# - config_name: 049_Boris
#   data_files:
#     - split: full
#       path: data/049_Boris/all.parquet
#     - split: lite
#       path: data/049_Boris/sample.parquet
# - config_name: 050_ING
#   data_files:
#     - split: full
#       path: data/050_ING/all.parquet
#     - split: lite
#       path: data/050_ING/sample.parquet
# - config_name: 051_Pokemon
#   data_files:
#     - split: full
#       path: data/051_Pokemon/all.parquet
#     - split: lite
#       path: data/051_Pokemon/sample.parquet
# - config_name: 052_Professional
#   data_files:
#     - split: full
#       path: data/052_Professional/all.parquet
#     - split: lite
#       path: data/052_Professional/sample.parquet
# - config_name: 053_Patents
#   data_files:
#     - split: full
#       path: data/053_Patents/all.parquet
#     - split: lite
#       path: data/053_Patents/sample.parquet
# - config_name: 054_Joe
#   data_files:
#     - split: full
#       path: data/054_Joe/all.parquet
#     - split: lite
#       path: data/054_Joe/sample.parquet
# - config_name: 055_German
#   data_files:
#     - split: full
#       path: data/055_German/all.parquet
#     - split: lite
#       path: data/055_German/sample.parquet
# - config_name: 056_Emoji
#   data_files:
#     - split: full
#       path: data/056_Emoji/all.parquet
#     - split: lite
#       path: data/056_Emoji/sample.parquet
# - config_name: 057_Spain
#   data_files:
#     - split: full
#       path: data/057_Spain/all.parquet
#     - split: lite
#       path: data/057_Spain/sample.parquet
# - config_name: 058_US
#   data_files:
#     - split: full
#       path: data/058_US/all.parquet
#     - split: lite
#       path: data/058_US/sample.parquet
# - config_name: 059_Second
#   data_files:
#     - split: full
#       path: data/059_Second/all.parquet
#     - split: lite
#       path: data/059_Second/sample.parquet
# - config_name: 060_Bakery
#   data_files:
#     - split: full
#       path: data/060_Bakery/all.parquet
#     - split: lite
#       path: data/060_Bakery/sample.parquet
# - config_name: 061_Disneyland
#   data_files:
#     - split: full
#       path: data/061_Disneyland/all.parquet
#     - split: lite
#       path: data/061_Disneyland/sample.parquet
# - config_name: 062_Trump
#   data_files:
#     - split: full
#       path: data/062_Trump/all.parquet
#     - split: lite
#       path: data/062_Trump/sample.parquet
# - config_name: 063_Influencers
#   data_files:
#     - split: full
#       path: data/063_Influencers/all.parquet
#     - split: lite
#       path: data/063_Influencers/sample.parquet
# - config_name: 064_Clustering
#   data_files:
#     - split: full
#       path: data/064_Clustering/all.parquet
#     - split: lite
#       path: data/064_Clustering/sample.parquet
# - config_name: 065_RFM
#   data_files:
#     - split: full
#       path: data/065_RFM/all.parquet
#     - split: lite
#       path: data/065_RFM/sample.parquet
- config_name: semeval
  data_files:
    - split: train
      path:
        - data/001_Forbes/qa.parquet
        - data/002_Titanic/qa.parquet
        - data/003_Love/qa.parquet
        - data/004_Taxi/qa.parquet
        - data/005_NYC/qa.parquet
        - data/006_London/qa.parquet
        - data/007_Fifa/qa.parquet
        - data/008_Tornados/qa.parquet
        - data/009_Central/qa.parquet
        - data/010_ECommerce/qa.parquet
        - data/011_SF/qa.parquet
        - data/012_Heart/qa.parquet
        - data/013_Roller/qa.parquet
        - data/014_Airbnb/qa.parquet
        - data/015_Food/qa.parquet
        - data/016_Holiday/qa.parquet
        - data/017_Hacker/qa.parquet
        - data/018_Staff/qa.parquet
        - data/019_Aircraft/qa.parquet
        - data/020_Real/qa.parquet
        - data/021_Telco/qa.parquet
        - data/022_Airbnbs/qa.parquet
        - data/023_Climate/qa.parquet
        - data/024_Salary/qa.parquet
        - data/025_Data/qa.parquet
        - data/026_Predicting/qa.parquet
        - data/027_Supermarket/qa.parquet
        - data/028_Predict/qa.parquet
        - data/029_NYTimes/qa.parquet
        - data/030_Professionals/qa.parquet
        - data/031_Trustpilot/qa.parquet
        - data/032_Delicatessen/qa.parquet
        - data/033_Employee/qa.parquet
        - data/034_World/qa.parquet
        - data/035_Billboard/qa.parquet
        - data/036_US/qa.parquet
        - data/037_Ted/qa.parquet
        - data/038_Stroke/qa.parquet
        - data/039_Happy/qa.parquet
        - data/040_Speed/qa.parquet
        - data/041_Airline/qa.parquet
        - data/042_Predict/qa.parquet
        - data/043_Predict/qa.parquet
        - data/044_IMDb/qa.parquet
        - data/045_Predict/qa.parquet
        - data/046_120/qa.parquet
        - data/047_Bank/qa.parquet
        - data/048_Data/qa.parquet
        - data/049_Boris/qa.parquet
    - split: dev
      path:
        - data/050_ING/qa.parquet
        - data/051_Pokemon/qa.parquet
        - data/052_Professional/qa.parquet
        - data/053_Patents/qa.parquet
        - data/054_Joe/qa.parquet
        - data/055_German/qa.parquet
        - data/056_Emoji/qa.parquet
        - data/057_Spain/qa.parquet
        - data/058_US/qa.parquet
        - data/059_Second/qa.parquet
        - data/060_Bakery/qa.parquet
        - data/061_Disneyland/qa.parquet
        - data/062_Trump/qa.parquet
        - data/063_Influencers/qa.parquet
        - data/064_Clustering/qa.parquet
        - data/065_RFM/qa.parquet
---
# 💾🏋️💾 DataBench 💾🏋️💾

This repository contains the original 65 datasets used for the paper [Question Answering over Tabular Data with DataBench:
A Large-Scale Empirical Evaluation of LLMs](https://huggingface.co/datasets/cardiffnlp/databench/resolve/main/Databench-LREC-Coling-2024.pdf) which appeared in LREC-COLING 2024.

Large Language Models (LLMs) are showing emerging abilities, and one of the latest recognized ones is tabular
reasoning in question answering on tabular data. Although there are some available datasets to assess question
answering systems on tabular data, they are not large and diverse enough to evaluate this new ability of LLMs.
To this end, we provide a corpus of 65 real world datasets, with 3,269,975 and 1615 columns in total, and 1300 questions to evaluate your models for the task of QA over Tabular Data.


## Usage

```python
from datasets import load_dataset

# Load all QA pairs
all_qa = load_dataset("cardiffnlp/databench", name="qa", split="train")

# Load SemEval 2025 task 8 Question-Answer splits
semeval_train_qa = load_dataset("cardiffnlp/databench", name="semeval", split="train")
semeval_dev_qa = load_dataset("cardiffnlp/databench", name="semeval", split="dev")
```
You can use any of the individual [integrated libraries](https://huggingface.co/docs/hub/datasets-libraries#libraries) to load the actual data where the answer is to be retrieved.

For example, using pandas in Python:

```python
import pandas as pd

# "001_Forbes", the id of the dataset
ds_id = all_qa['dataset'][0] 

# full dataset
df = pd.read_parquet(f"hf://datasets/cardiffnlp/databench/data/{ds_id}/all.parquet")

# sample dataset
df = pd.read_parquet(f"hf://datasets/cardiffnlp/databench/data/{ds_id}/sample.parquet")

```

## 📚 Datasets
By clicking on each name in the table below, you will be able to explore each dataset.

|    | Name                           |   Rows |   Cols | Domain                     | Source (Reference)                                                                                                                |
|---:|:-------------------------------|-------:|-------:|:---------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
|  1 | [Forbes](https://public.graphext.com/0b211530c7e213d3/index.html?section=data)                         |   2668 |     17 | Business                   | [Forbes](https://www.forbes.com/billionaires/)|
|  2 | [Titanic](https://public.graphext.com/8577225c5ffd88fd/index.html)                        |    887 |      8 | Travel and Locations       | [Kaggle](https://www.kaggle.com/competitions/titanic/data)|
|  3 | [Love](https://public.graphext.com/be7a566b0c485916/index.html)                           |    373 |     35 | Social Networks and Surveys | [Graphext](https://public.graphext.com/1de78f6820cfd5ba/index.html)                                                            |
|  4 | [Taxi](https://public.graphext.com/bcee13c23070f333/index.html)                           | 100000 |     20 | Travel and Locations       | [Kaggle](https://www.kaggle.com/competitions/nyc-taxi-trip-duration/overview)                                                 |
|  5 | [NYC Calls](https://public.graphext.com/1ce2f5fae408621e/index.html)                      | 100000 |     46 | Business                   | [City of New York](https://data.cityofnewyork.us/Social-Services/NYC-311-Data/jrb2-thup)                                       |
|  6 | [London Airbnbs](https://public.graphext.com/6bbf4bbd3ff279c0/index.html)                 |  75241 |     74 | Travel and Locations       | [Kaggle](https://www.kaggle.com/datasets/labdmitriy/airbnb)                                                                   |
|  7 | [Fifa](https://public.graphext.com/37bca51494c10a79/index.html)                           |  14620 |     59 | Sports and Entertainment  | [Kaggle](https://www.kaggle.com/datasets/stefanoleone992/fifa-21-complete-player-dataset)                                      |
|  8 | [Tornados](https://public.graphext.com/4be9872e031199c3/index.html)                       |  67558 |     14 | Health                     | [Kaggle](https://www.kaggle.com/datasets/danbraswell/us-tornado-dataset-1950-2021)                                             |
|  9 | [Central Park](https://public.graphext.com/7b3d3a4d7bf1e9b5/index.html)                   |  56245 |      6 | Travel and Locations       | [Kaggle](https://www.kaggle.com/datasets/danbraswell/new-york-city-weather-18692022)                                          |
| 10 | [ECommerce Reviews](https://public.graphext.com/a5b8911b215958ad/index.html)              |  23486 |     10 | Business                   | [Kaggle](https://www.kaggle.com/datasets/nicapotato/womens-ecommerce-clothing-reviews)                                        |
| 11 | [SF Police](https://public.graphext.com/ab815ab14f88115c/index.html)                      | 713107 |     35 | Social Networks and Surveys | [US Gov](https://catalog.data.gov/dataset/police-department-incident-reports-2018-to-present)                                 |
| 12 | [Heart Failure](https://public.graphext.com/245cec64075f5542/index.html)                  |    918 |     12 | Health                     | [Kaggle](https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction)                                                |
| 13 | [Roller Coasters](https://public.graphext.com/1e550e6c24fc1930/index.html)                |   1087 |     56 | Sports and Entertainment  | [Kaggle](https://www.kaggle.com/datasets/robikscube/rollercoaster-database)                                                    |
| 14 | [Madrid Airbnbs](https://public.graphext.com/77265ea3a63e650f/index.html)                   |  20776 |     75 | Travel and Locations       | [Inside Airbnb](http://data.insideairbnb.com/spain/comunidad-de-madrid/madrid/2023-09-07/data/listings.parquet.gz)                 |
| 15 | [Food Names](https://public.graphext.com/5aad4c5d6ef140b3/index.html)           |    906 |      4 | Business                   | [Data World](https://data.world/alexandra/generic-food-database)                                                        |
| 16 | [Holiday Package Sales](https://public.graphext.com/fbc34d3f24282e46/index.html)           |   4888 |     20 | Travel and Locations       | [Kaggle](https://www.kaggle.com/datasets/susant4learning/holiday-package-purchase-prediction)                                 |
| 17 | [Hacker News](https://public.graphext.com/f20501a9d616b5a5/index.html)                    |   9429 |     20 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/hacker-news/hacker-news)                                                              |
| 18 | [Staff Satisfaction](https://public.graphext.com/6822ac1ce6307fec/index.html)              |  14999 |     11 | Business                   | [Kaggle](https://www.kaggle.com/datasets/mohamedharris/employee-satisfaction-index-dataset)                                     |
| 19 | [Aircraft Accidents](https://public.graphext.com/1802117b1b14f5c5/index.html)              |  23519 |     23 | Health                     | [Kaggle](https://www.kaggle.com/datasets/ramjasmaurya/aviation-accidents-history1919-april-2022)                               |
| 20 | [Real Estate Madrid](https://public.graphext.com/5f83ec219a7ea84f/index.html)              |  26026 |     59 | Business                   | [Idealista](https://public.graphext.com/5f83ec219a7ea84f/index.html)                                                            |
| 21 | [Telco Customer Churn](https://public.graphext.com/362cd8e3e96f70d4/index.html)           |   7043 |     21 | Business                   | [Kaggle](https://www.kaggle.com/datasets/blastchar/telco-customer-churn)                                                       |
| 22 | [Airbnbs Listings NY](https://public.graphext.com/77265ea3a63e650f/index.html)            |  37012 |     33 | Travel and Locations       | [Kaggle](https://www.kaggle.com/datasets/dgomonov/new-york-city-airbnb-open-data)                                              |
| 23 | [Climate in Madrid](https://public.graphext.com/83a75b4f1cea8df4/index.html?section=data)                 |  36858 |     26 | Travel and Locations       | [AEMET](https://public.graphext.com/83a75b4f1cea8df4/index.html?section=data)                                                   |
| 24 | [Salary Survey Spain 2018](https://public.graphext.com/24d1e717ba01aa3d/index.html)        | 216726 |     29 | Business                   | [INE](ine.es)                                                                                                                  |
| 25 | [Data Driven SEO   ](https://public.graphext.com/4e5b1cac9ebdfa44/index.html)              |     62 |      5 | Business                   | [Graphext](https://www.graphext.com/post/data-driven-seo-a-keyword-optimization-guide-using-web-scraping-co-occurrence-analysis-graphext-deepnote-adwords) |
| 26 | [Predicting Wine Quality](https://public.graphext.com/de04acf5d18a9aea/index.html)         |   1599 |     12 | Business                   | [Kaggle](https://www.kaggle.com/datasets/yasserh/wine-quality-dataset)                                                          |
| 27 | [Supermarket Sales](https://public.graphext.com/9a6742da6a8d8f7f/index.html)               |   1000 |     17 | Business                   | [Kaggle](https://www.kaggle.com/datasets/aungpyaeap/supermarket-sales)                                                          |
| 28 | [Predict Diabetes](https://public.graphext.com/def4bada27af324c/index.html)                |    768 |      9 | Health                     | [Kaggle](https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset)                                              |
| 29 | [NYTimes World In 2021](https://public.graphext.com/af4c8eef1757973c/index.html?section=data)           |  52588 |      5 | Travel and Locations       | [New York Times](https://public.graphext.com/af4c8eef1757973c/index.html)                                                       |
| 30 | [Professionals Kaggle Survey](https://public.graphext.com/3a2e87f90363a85d/index.html)     |  19169 |     64 | Business                   | [Kaggle](https://www.kaggle.com/c/kaggle-survey-2021/data)                                                                     |
| 31 | [Trustpilot Reviews](https://public.graphext.com/367e29432331fbfd/index.html?section=data)             |   8020 |      6 | Business                   | [TrustPilot](https://public.graphext.com/367e29432331fbfd/index.html?section=data)                                              |
| 32 | [Delicatessen Customers](https://public.graphext.com/a1687589fbde07bc/index.html)         |   2240 |     29 | Business                   | [Kaggle](https://www.kaggle.com/datasets/rodsaldanha/arketing-campaign)                                                         |
| 33 | [Employee Attrition](https://public.graphext.com/07a91a15ecf2b8f6/index.html)             |  14999 |     11 | Business                   | [Kaggle(modified)](https://www.kaggle.com/datasets/pavan9065/predicting-employee-attrition)                                               |
| 34 | [World Happiness Report 2020](https://public.graphext.com/754c83ff0a7ba087/index.html)     |    153 |     20 | Social Networks and Surveys | [World Happiness](https://worldhappiness.report/data/)                                                                         |
| 35 | [Billboard Lyrics](https://public.graphext.com/7e0b009e8d0af719/index.html)               |   5100 |      6 | Sports and Entertainment  | [Brown University](https://cs.brown.edu/courses/cs100/students/project11/)                                                        |
| 36 | [US Migrations 2012-2016](https://public.graphext.com/dbdadf87a5c21695/index.html)         | 288300 |      9 | Social Networks and Surveys | [US Census](https://www.census.gov/topics/population/migration/guidance/county-to-county-migration-flows.html)                 |
| 37 | [Ted Talks](https://public.graphext.com/07e48466fb670904/index.html)                       |   4005 |     19 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/ashishjangra27/ted-talks)                                                             |
| 38 | [Stroke Likelihood](https://public.graphext.com/20ccfee9e84948e3/index.html)               |   5110 |     12 | Health                     | [Kaggle](https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease)                                   |
| 39 | [Happy Moments](https://public.graphext.com/9b86efff48989701/index.html)                   | 100535 |     11 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/ritresearch/happydb)                                                                  |
| 40 | [Speed Dating](https://public.graphext.com/f1912daad7870be0/index.html)                    |   8378 |    123 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/ulrikthygepedersen/speed-dating)                                                       |
| 41 | [Airline Mentions X (former Twitter)](https://public.graphext.com/29cb7f73f6e17a38/index.html)  | 14640 |     15 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/7e6999327d1f83fd/index.html)                                                   |
| 42 | [Predict Student Performance](https://public.graphext.com/def4bada27af324c/index.html)     |    395 |     33 | Business                   | [Kaggle](https://www.kaggle.com/datasets/impapan/student-performance-data-set)                                                  |
| 43 | [Loan Defaults](https://public.graphext.com/0c7fb68ab8071a1f/index.html)                  |  83656 |     20 | Business                   | [SBA](https://www.kaggle.com/datasets/mirbektoktogaraev/should-this-loan-be-approved-or-denied)                                |
| 44 | [IMDb Movies](https://public.graphext.com/e23e33774872c496/index.html)                     |  85855 |     22 | Sports and Entertainment  | [Kaggle](https://www.kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows)                        |
| 45 | [Spotify Song Popularity](https://public.graphext.com/def4bada27af324c/index.html)                  |  21000 |     19 | Sports and Entertainment  | [Spotify](https://www.kaggle.com/datasets/tomigelo/spotify-audio-features)                                                      |
| 46 | [120 Years Olympics](https://public.graphext.com/e57d5e2f172c9a99/index.html)              | 271116 |     15 | Sports and Entertainment  | [Kaggle](https://www.kaggle.com/datasets/heesoo37/120-years-of-olympic-history-athletes-and-results)                           |
| 47 | [Bank Customer Churn](https://public.graphext.com/e8f7aeacd209f74a/index.html)             |   7088 |     15 | Business                   | [Kaggle](https://www.kaggle.com/datasets/mathchi/churn-for-bank-customers)                                                      |
| 48 | [Data Science Salary Data](https://public.graphext.com/4e5b1cac9ebdfa44/index.html)        |    742 |     28 | Business                   | [Kaggle](https://www.kaggle.com/datasets/ruchi798/data-science-job-salaries)                                                    |
| 49 | [Boris Johnson UK PM Tweets](https://public.graphext.com/f6623a1ca0f41c8e/index.html)      |   3220 |     34 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/f6623a1ca0f41c8e/index.html)                                                  |
| 50 | [ING 2019 X Mentions](https://public.graphext.com/075030310aa702c6/index.html)  |   7244 |     22 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/075030310aa702c6/index.html)                                                  |
| 51 | [Pokemon Features](https://public.graphext.com/f30d4d863a2e6b01/index.html)     |   1072 |     13 | Business                   | [Kaggle](https://www.kaggle.com/datasets/rounakbanik/pokemon)                                                                  |
| 52 | [Professional Map](https://public.graphext.com/70af2240cb751968/index.html)               |   1227 |     12 | Business                   | [Kern et al, PNAS'20](https://github.com/behavioral-ds/VocationMap)                                                            |
| 53 | [Google Patents](https://public.graphext.com/a262300e31874716/index.html)                 |   9999 |     20 | Business                   | [BigQuery](https://www.kaggle.com/datasets/bigquery/patents/data)                                                              |
| 54 | [Joe Biden Tweets](https://public.graphext.com/33fa2efa41541ab1/index.html)               |    491 |     34 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/339cee259f0a9b32/index.html?section=data)                                       |
55 | [German Loans](https://public.graphext.com/d3f5e425e9d4b0a1/index.html)                   |   1000 |     18 | Business                   | [Kaggle](https://www.kaggle.com/datasets/uciml/german-credit/data)                                                     |
| 56 | [Emoji Diet](https://public.graphext.com/e721cc7d790c06d4/index.html)                     |     58 |     35 | Health                     | [Kaggle](https://www.kaggle.com/datasets/ofrancisco/emoji-diet-nutritional-data-sr28)                                          |
| 57 | [Spain Survey 2015](https://public.graphext.com/90ca7539b160fdfa/index.html?section=data)              |  20000 |     45 | Social Networks and Surveys | [CIS](https://public.graphext.com/90ca7539b160fdfa/index.html?section=data)                                                     |
| 58 | [US Polls 2020](https://public.graphext.com/dbdadf87a5c21695/index.html)                   |   3523 |     52 | Social Networks and Surveys | [Brandwatch](https://www.brandwatch.com/p/us-election-raw-polling-data/)                                                       |
| 59 | [Second Hand Cars](https://public.graphext.com/543d0c49d7120ca0/index.html)                |  50000 |     21 | Business                   | [DataMarket](https://www.kaggle.com/datasets/datamarket/venta-de-coches)                                                       |
| 60 | [Bakery Purchases](https://public.graphext.com/6f2102e80f47a192/index.html)                |  20507 |      5 | Business                   | [Kaggle](https://www.kaggle.com/code/xvivancos/market-basket-analysis/report)                                                   |
| 61 | [Disneyland Customer Reviews](https://public.graphext.com/b1037bb566b7b316/index.html)     |  42656 |      6 | Travel and Locations       | [Kaggle](https://www.kaggle.com/datasets/arushchillar/disneyland-reviews)                                                      |
| 62 | [Trump Tweets](https://public.graphext.com/7aff94c3b7f159fc/index.html)                    |  15039 |     20 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/be903c098a90e46f/index.html?section=data)                                       |
| 63 | [Influencers](https://public.graphext.com/e097f1ea03d761a9/index.html)                    |   1039 |     14 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/e097f1ea03d761a9/index.html)                                                   |
| 64 | [Clustering Zoo Animals](https://public.graphext.com/d1b66902e46a712a/index.html)          |    101 |     18 | Health                     | [Kaggle](https://www.kaggle.com/datasets/jirkadaberger/zoo-animals)                                                            |
| 65 | [RFM Analysis](https://public.graphext.com/4db2e54e29006a21/index.html)                   | 541909 |      8 | Business                   | [UCI ML](https://www.kaggle.com/datasets/carrie1/ecommerce-data)                                                               |

## 🏗️ Folder structure
Each folder represents one dataset. You will find the following files within:

* all.parquet: the processed data, with each column tagged with our typing system, in [parquet](https://arrow.apache.org/docs/python/parquet.html).
* qa.parquet: contains the human-made set of questions, tagged by type and columns used, for the dataset (sample_answer indicates the answers for DataBench lite)
* sample.parquet: sample containing 20 rows of the original dataset (DataBench lite)
* info.yml: additional information about the dataset

## 🗂️ Column typing system
In an effort to map the stage for later analysis, we have categorized the columns by type. This information allows us to segment different kinds of data so that we can subsequently analyze the model's behavior on each column type separately. All parquet files have been casted to their smallest viable data type using the open source [Lector](https://github.com/graphext/lector) reader.

What this means is that in the data types we have more granular information that allows us to know if the column contains NaNs or not (following panda’s convention of Int vs int), as well as whether small numerical values contain negatives (Uint vs int) and their range. We also have dates with potential timezone information (although for now they’re all UTC), as well as information about categories’ cardinality coming from the arrow types.

In the table below you can see all the data types assigned to each column, as well as the number of columns for each type. The most common data types are numbers and categories with 1336 columns of the total of 1615 included in DataBench. These are followed by some other more rare types as urls, booleans, dates or lists of elements.

| Type           | Columns | Example                 |
| -------------- | ------- | ----------------------- |
| number         | 788     | 55                      |
| category       | 548     | apple                   |
| date           | 50      | 1970-01-01              |
| text           | 46      | A red fox ran...        |
| url            | 31      | google.com              |
| boolean        | 18      | True                    |
| list[number]   | 14      | [1,2,3]                 |
| list[category] | 112     | [apple, orange, banana] |
| list[url]      | 8       | [google.com, apple.com] |

## 🔗 Reference

You can download the paper [here](https://huggingface.co/datasets/cardiffnlp/databench/resolve/main/Databench-LREC-Coling-2024.pdf).

If you use this resource, please use the following reference:
```
@inproceedings{oses-etal-2024-databench,
    title = "Question Answering over Tabular Data with DataBench: A Large-Scale Empirical Evaluation of LLMs",
    author = "Jorge Osés Grijalba and Luis Alfonso Ureña-López and
    Eugenio Martínez Cámara and Jose Camacho-Collados",
    booktitle = "Proceedings of LREC-COLING 2024",
    year = "2024",
    address = "Turin, Italy"
}
```