Datasets:

Languages:
English
ArXiv:
License:
asahi417 commited on
Commit
19391a5
·
1 Parent(s): b6b3d40

Update lm_finetuning.py

Browse files
Files changed (1) hide show
  1. lm_finetuning.py +15 -11
lm_finetuning.py CHANGED
@@ -1,13 +1,14 @@
1
- ```
2
  wandb offline
3
  export WANDB_DISABLED='true'
4
  export RAY_RESULTS='ray_results'
5
- python lm_finetuning.py -m "roberta-large" -c "ckpt/roberta_large" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-2019-90m-tweet-topic-multi"
6
  python lm_finetuning.py -m "roberta-base" -c "ckpt/roberta_base" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-2019-90m-tweet-topic-multi"
7
  python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-2019-90m" -c "ckpt/twitter-roberta-base-2019-90m" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-2019-90m-tweet-topic-multi"
8
  python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2020" -c "ckpt/twitter-roberta-base-dec2020"
9
  python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2021" -c "ckpt/twitter-roberta-base-dec2021"
10
- ```
 
11
  import argparse
12
  import json
13
  import logging
@@ -65,6 +66,9 @@ def main():
65
  parser = argparse.ArgumentParser(description='Fine-tuning language model.')
66
  parser.add_argument('-m', '--model', help='transformer LM', default='roberta-base', type=str)
67
  parser.add_argument('-d', '--dataset', help='', default='cardiffnlp/tweet_topic_multi', type=str)
 
 
 
68
  parser.add_argument('-l', '--seq-length', help='', default=128, type=int)
69
  parser.add_argument('--random-seed', help='', default=42, type=int)
70
  parser.add_argument('--eval-step', help='', default=50, type=int)
@@ -86,7 +90,7 @@ def main():
86
  tokenizer = AutoTokenizer.from_pretrained(opt.model, local_files_only=not network)
87
  model = AutoModelForSequenceClassification.from_pretrained(
88
  opt.model,
89
- num_labels=len(dataset['train'][0]['label']),
90
  local_files_only=not network,
91
  problem_type="multi_label_classification"
92
  )
@@ -106,11 +110,11 @@ def main():
106
  eval_steps=opt.eval_step,
107
  seed=opt.random_seed
108
  ),
109
- train_dataset=tokenized_datasets["train"],
110
- eval_dataset=tokenized_datasets["validation"],
111
  compute_metrics=compute_metric_search,
112
  model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
113
- opt.model, return_dict=True, num_labels=dataset['train'].features['label'].num_classes)
114
  )
115
  # parameter search
116
  if PARALLEL:
@@ -145,7 +149,7 @@ def main():
145
  # evaluation
146
  model = AutoModelForSequenceClassification.from_pretrained(
147
  best_model_path,
148
- num_labels=dataset['train'].features['label'].num_classes,
149
  local_files_only=not network)
150
  trainer = Trainer(
151
  model=model,
@@ -154,11 +158,11 @@ def main():
154
  evaluation_strategy="no",
155
  seed=opt.random_seed
156
  ),
157
- train_dataset=tokenized_datasets["train"],
158
- eval_dataset=tokenized_datasets["test"],
159
  compute_metrics=compute_metric_all,
160
  model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
161
- opt.model, return_dict=True, num_labels=dataset['train'].features['label'].num_classes)
162
  )
163
  summary_file = pj(opt.output_dir, opt.summary_file)
164
  if not opt.skip_eval:
 
1
+ '''
2
  wandb offline
3
  export WANDB_DISABLED='true'
4
  export RAY_RESULTS='ray_results'
5
+ python lm_finetuning.py -m "roberta-large" -c "ckpt/roberta_large" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-large-tweet-topic-multi" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021"
6
  python lm_finetuning.py -m "roberta-base" -c "ckpt/roberta_base" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-2019-90m-tweet-topic-multi"
7
  python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-2019-90m" -c "ckpt/twitter-roberta-base-2019-90m" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-2019-90m-tweet-topic-multi"
8
  python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2020" -c "ckpt/twitter-roberta-base-dec2020"
9
  python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2021" -c "ckpt/twitter-roberta-base-dec2021"
10
+ '''
11
+
12
  import argparse
13
  import json
14
  import logging
 
66
  parser = argparse.ArgumentParser(description='Fine-tuning language model.')
67
  parser.add_argument('-m', '--model', help='transformer LM', default='roberta-base', type=str)
68
  parser.add_argument('-d', '--dataset', help='', default='cardiffnlp/tweet_topic_multi', type=str)
69
+ parser.add_argument('--split-train', help='', required=True, type=str)
70
+ parser.add_argument('--split-validation', help='', required=True, type=str)
71
+ parser.add_argument('--split-test', help='', required=True, type=str)
72
  parser.add_argument('-l', '--seq-length', help='', default=128, type=int)
73
  parser.add_argument('--random-seed', help='', default=42, type=int)
74
  parser.add_argument('--eval-step', help='', default=50, type=int)
 
90
  tokenizer = AutoTokenizer.from_pretrained(opt.model, local_files_only=not network)
91
  model = AutoModelForSequenceClassification.from_pretrained(
92
  opt.model,
93
+ num_labels=len(dataset[opt.split_train][0]['label']),
94
  local_files_only=not network,
95
  problem_type="multi_label_classification"
96
  )
 
110
  eval_steps=opt.eval_step,
111
  seed=opt.random_seed
112
  ),
113
+ train_dataset=tokenized_datasets[opt.split_train],
114
+ eval_dataset=tokenized_datasets[opt.split_validation],
115
  compute_metrics=compute_metric_search,
116
  model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
117
+ opt.model, return_dict=True, num_labels=dataset[opt.split_train].features['label'].num_classes)
118
  )
119
  # parameter search
120
  if PARALLEL:
 
149
  # evaluation
150
  model = AutoModelForSequenceClassification.from_pretrained(
151
  best_model_path,
152
+ num_labels=dataset[opt.split_train].features['label'].num_classes,
153
  local_files_only=not network)
154
  trainer = Trainer(
155
  model=model,
 
158
  evaluation_strategy="no",
159
  seed=opt.random_seed
160
  ),
161
+ train_dataset=tokenized_datasets[opt.split_train],
162
+ eval_dataset=tokenized_datasets[opt.split_test],
163
  compute_metrics=compute_metric_all,
164
  model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
165
+ opt.model, return_dict=True, num_labels=dataset[opt.split_train].features['label'].num_classes)
166
  )
167
  summary_file = pj(opt.output_dir, opt.summary_file)
168
  if not opt.skip_eval: