Datasets:

Languages:
English
ArXiv:
License:
asahi417 commited on
Commit
44cbae4
·
1 Parent(s): 692a40d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -19
README.md CHANGED
@@ -71,25 +71,25 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
71
  ### Data Splits
72
 
73
 
74
- | split | number of texts | description |
75
- |:--------------------------|-----:|:-----|
76
- | test | 1679 | alias of `temporal_2021_test` |
77
- | train | 4585 | alias of `temporal_2020_train` |
78
- | validation | 573 | alias of `temporal_2020_validation` |
79
- | temporal_2020_test | 573 | test set in 2020 period of temporal split |
80
- | temporal_2021_test | 1679 | test set in 2021 period of temporal split |
81
- | temporal_2020_train | 4585 | training set in 2020 period of temporal split |
82
- | temporal_2021_train | 1505 | training set in 2021 period of temporal split |
83
- | temporal_2020_validation | 573 | validation set in 2020 period of temporal split |
84
- | temporal_2021_validation | 188 | validation set in 2021 period of temporal split |
85
- | random_train | 4564 | training set of random split (mix of 2020 and 2021) |
86
- | random_validation | 573 | validation set of random split (mix of 2020 and 2021) |
87
- | coling2022_random_test | 5536 | test set of random split used in COLING 2022 Tweet Topic paper |
88
- | coling2022_random_train | 5731 | training set of random split used in COLING 2022 Tweet Topic paper |
89
- | coling2022_temporal_test | 5536 | test set of temporal split used in COLING 2022 Tweet Topic paper |
90
- | coling2022_temporal_train | 5731 | training set of temporal split used in COLING 2022 Tweet Topic paper|
91
-
92
- For the temporal-shift setting, we recommend to train models on `train` (`temporal_2020_train`) with `validation` (`temporal_2020_validation`) and evaluate on `test` (`temporal_2021_test`).
93
  For the random split, we recommend to train models on `random_train` with `random_validation` and evaluate on `test` (`temporal_2021_test`).
94
  To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `coling2022_temporal_train` and `coling2022_temporal_test` for temporal-shift, and `coling2022_random_train` and `coling2022_temporal_test` fir random split (note that the coling2022 split does not have validation set).
95
 
 
71
  ### Data Splits
72
 
73
 
74
+ | split | number of texts | description |
75
+ |:----------------------------|-----:|:-----|
76
+ | `test` | 1679 | alias of `temporal_2021_test` |
77
+ | `train` | 4585 | alias of `temporal_2020_train` |
78
+ | `validation` | 573 | alias of `temporal_2020_validation` |
79
+ | `temporal_2020_test` | 573 | test set in 2020 period of temporal split |
80
+ | `temporal_2021_test` | 1679 | test set in 2021 period of temporal split |
81
+ | `temporal_2020_train` | 4585 | training set in 2020 period of temporal split |
82
+ | `temporal_2021_train` | 1505 | training set in 2021 period of temporal split |
83
+ | `temporal_2020_validation` | 573 | validation set in 2020 period of temporal split |
84
+ | `temporal_2021_validation` | 188 | validation set in 2021 period of temporal split |
85
+ | `random_train` | 4564 | training set of random split (mix of 2020 and 2021) |
86
+ | `random_validation` | 573 | validation set of random split (mix of 2020 and 2021) |
87
+ | `coling2022_random_test` | 5536 | test set of random split used in COLING 2022 Tweet Topic paper |
88
+ | `coling2022_random_train` | 5731 | training set of random split used in COLING 2022 Tweet Topic paper |
89
+ | `coling2022_temporal_test` | 5536 | test set of temporal split used in COLING 2022 Tweet Topic paper |
90
+ | `coling2022_temporal_train` | 5731 | training set of temporal split used in COLING 2022 Tweet Topic paper|
91
+
92
+ For the temporal-shift setting, we recommend to train models on `train` (an alias of `temporal_2020_train`) with `validation` (an alias of `temporal_2020_validation`) and evaluate on `test` (an alias of `temporal_2021_test`).
93
  For the random split, we recommend to train models on `random_train` with `random_validation` and evaluate on `test` (`temporal_2021_test`).
94
  To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `coling2022_temporal_train` and `coling2022_temporal_test` for temporal-shift, and `coling2022_random_train` and `coling2022_temporal_test` fir random split (note that the coling2022 split does not have validation set).
95