Datasets:
File size: 6,859 Bytes
09ef168 4baed46 09ef168 816a97f 09ef168 7ea460a 09ef168 23f8426 09ef168 c2a212a 09ef168 2772f07 09ef168 c2a212a 4baed46 09ef168 4baed46 09ef168 4baed46 816a97f 4baed46 816a97f 4baed46 09ef168 4baed46 816a97f 4baed46 816a97f 09ef168 816a97f 09ef168 816a97f 09ef168 7ea460a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset
# script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Carolina Corpus"""
from collections import defaultdict
from lxml import etree
import os
import datasets
import gzip
logger = datasets.logging.get_logger(__name__)
_HOMEPAGE = "https://sites.usp.br/corpuscarolina/"
_DESCRIPTION = """
Carolina is an Open Corpus for Linguistics and Artificial Intelligence with a
robust volume of texts of varied typology in contemporary Brazilian Portuguese
(1970-).
"""
_CITATION = r"""
@misc{crespo2023carolina,
title={Carolina: a General Corpus of Contemporary Brazilian Portuguese with Provenance, Typology and Versioning Information},
author={Maria Clara Ramos Morales Crespo and
Maria Lina de Souza Jeannine Rocha and
Mariana Lourenço Sturzeneker and
Felipe Ribas Serras and
Guilherme Lamartine de Mello and
Aline Silva Costa and
Mayara Feliciano Palma and
Renata Morais Mesquita and
Raquel de Paula Guets and
Mariana Marques da Silva and
Marcelo Finger and
Maria Clara Paixão de Sousa and
Cristiane Namiuti and
Vanessa Martins do Monte},
year={2023},
eprint={2303.16098},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_LICENSE = """
The Open Corpus for Linguistics and Artificial Intelligence (Carolina) was
compiled for academic purposes, namely linguistic and computational analysis.
It is composed of texts assembled in various digital repositories, whose
licenses are multiple and therefore should be observed when making use of the
corpus. The Carolina headers are licensed under Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International."
"""
def _taxonomies():
"""Creates a map between taxonomy code and name
Returns
-------
dict
The dictionary of codes and names.
"""
return dict(
dat="datasets_and_other_corpora",
jud="judicial_branch",
leg="legislative_branch",
pub="public_domain_works",
soc="social_media",
uni="university_domains",
wik="wikis",
)
_VERSION = "1.3.0"
_CORPUS_URL = "corpus/{tax}/"
_CHECKSUM_FNAME = _CORPUS_URL + "checksum.sha256"
class CarolinaConfig(datasets.BuilderConfig):
"""Carolina Configuration."""
def __init__(self, taxonomy: str = None, **kwargs):
"""BuilderConfig for Carolina
Parameters
----------
taxonomy : str
The taxonomy code (3 letters). The code defines the taxonomy
to download. If `None`, all taxonomies will be downloaded.
**kwargs
Arguments passed to super.
"""
# validates taxonomy
if taxonomy is None:
taxonomy = "all"
elif taxonomy != "all" and taxonomy not in _taxonomies():
raise ValueError(f"Invalid taxonomy: {taxonomy}")
# custom name and description
description = "Carolina corpus."
if taxonomy == "all":
name = "carolina"
description += " Using all taxonomies."
else:
name = _taxonomies()[taxonomy]
description += f" Using taxonomy {taxonomy}"
super(CarolinaConfig, self).__init__(
name=name, description=description, **kwargs)
# Carolina attributes
self.taxonomy = taxonomy
self.version = datasets.Version(_VERSION)
class Carolina(datasets.GeneratorBasedBuilder):
"""Carolina Downloader and Builder"""
BUILDER_CONFIG_CLASS = CarolinaConfig
def _info(self):
features = datasets.Features({
"meta": datasets.Value("string"),
"text": datasets.Value("string")
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
features=features,
license=_LICENSE
)
def _split_generators(self, dl_manager):
# list taxonomies to download
if self.config.taxonomy == "all":
taxonomies = _taxonomies().values()
else:
taxonomies = [_taxonomies()[self.config.taxonomy]]
# download checksum files
checksum_urls = {t: _CHECKSUM_FNAME.format(tax=t) for t in taxonomies}
checksum_paths = dl_manager.download(checksum_urls)
# prepare xml file name and zip urls
gzip_urls = list()
for tax, cpath in checksum_paths.items():
tax_path = _CORPUS_URL.format(tax=tax)
with open(cpath, encoding="utf-8") as cfile:
for line in cfile:
xml_tax_path = line.split()[1] # xml file inside taxonomy
zip_fname = xml_tax_path + ".gz" # zip file inside taxonomy
zip_fpath = os.path.join(tax_path, zip_fname) # path inside corpus
gzip_urls.append(zip_fpath)
gzip_files = dl_manager.download(gzip_urls)
return [
datasets.SplitGenerator(
name="corpus",
gen_kwargs={"filepaths": gzip_files}
)
]
def _generate_examples(self, filepaths):
TEI_NS = "{http://www.tei-c.org/ns/1.0}"
parser_params = dict(
huge_tree=True,
encoding="utf-8",
tag=f"{TEI_NS}TEI"
)
_key = 0
for doc_path in filepaths:
logger.info("generating examples from = %s", doc_path)
with gzip.open(open(doc_path, "rb"), "rb") as gzip_file:
for _, tei in etree.iterparse(gzip_file, **parser_params):
header = tei.find(f"{TEI_NS}teiHeader")
meta = etree.tostring(
header, encoding="utf-8").decode("utf-8")
text = ' '.join([e.text
for e in tei.findall(f".//{TEI_NS}body/{TEI_NS}p")
if e.text is not None
])
yield _key, {
"meta": meta,
"text": text
}
_key += 1
gzip_file.close()
|