File size: 6,065 Bytes
b4bbbc2 d0ba5a2 b4bbbc2 d0ba5a2 b4bbbc2 d0ba5a2 b4bbbc2 d0ba5a2 b4bbbc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import os
import datasets
import pandas as pd
from datasets.tasks import AudioClassification
_NAMES = [
# Chinese 0-36
"gao_hu",
"er_hu",
"zhong_hu",
"ge_hu",
"di_yin_ge_hu",
"jing_hu",
"ban_hu",
"bang_di",
"qu_di",
"xin_di",
"da_di",
"gao_yin_sheng",
"zhong_yin_sheng",
"di_yin_sheng",
"gao_yin_suo_na",
"zhong_yin_suo_na",
"ci_zhong_yin_suo_na",
"di_yin_suo_na",
"gao_yin_guan",
"zhong_yin_guan",
"di_yin_guan",
"bei_di_yin_guan",
"ba_wu",
"xun",
"xiao",
"liu_qin",
"xiao_ruan",
"pi_pa",
"yang_qin",
"zhong_ruan",
"da_ruan",
"gu_zheng",
"gu_qin",
"kong_hou",
"san_xian",
"yun_luo",
"bian_zhong",
# Western 37-60
"violin",
"viola",
"cello",
"double_bass",
"piccolo",
"flute",
"oboe",
"clarinet",
"bassoon",
"saxophone",
"trumpet",
"trombone",
"horn",
"tuba",
"harp",
"tubular_bells",
"bells",
"xylophone",
"vibraphone",
"marimba",
"piano",
"clavichord",
"accordion",
"organ",
]
_HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}"
_DOMAIN = f"{_HOMEPAGE}/resolve/master/data"
_URLS = {
"audio": f"{_DOMAIN}/audio.zip",
"mel": f"{_DOMAIN}/mel.zip",
"Chinese": f"{_DOMAIN}/Chinese.csv",
"Western": f"{_DOMAIN}/Western.csv",
}
class instrument_timbre(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
"audio": datasets.Audio(sampling_rate=44100),
"mel": datasets.Image(),
"instrument": datasets.features.ClassLabel(names=_NAMES),
"slim": datasets.Value("float32"),
"bright": datasets.Value("float32"),
"dim": datasets.Value("float32"),
"sharp": datasets.Value("float32"),
"thick": datasets.Value("float32"),
"thin": datasets.Value("float32"),
"solid": datasets.Value("float32"),
"clear": datasets.Value("float32"),
"dry": datasets.Value("float32"),
"plump": datasets.Value("float32"),
"rough": datasets.Value("float32"),
"pure": datasets.Value("float32"),
"hoarse": datasets.Value("float32"),
"harmonious": datasets.Value("float32"),
"soft": datasets.Value("float32"),
"turbid": datasets.Value("float32"),
}
),
supervised_keys=("audio", "instrument"),
homepage=_HOMEPAGE,
license="CC-BY-NC-ND",
version="1.2.0",
task_templates=[
AudioClassification(
task="audio-classification",
audio_column="audio",
label_column="instrument",
)
],
)
def _split_generators(self, dl_manager):
audio_files = dl_manager.download_and_extract(_URLS["audio"])
mel_files = dl_manager.download_and_extract(_URLS["mel"])
cn_ins_eval = dl_manager.download(_URLS["Chinese"])
en_ins_eval = dl_manager.download(_URLS["Western"])
cn_labels = pd.read_csv(cn_ins_eval, index_col="instrument_id")
en_labels = pd.read_csv(en_ins_eval, index_col="instrument_id")
cn_dataset, en_dataset = {}, {}
for path in dl_manager.iter_files([audio_files]):
fname: str = os.path.basename(path)
i = int(fname.split(".wa")[0]) - 1
if fname.endswith(".wav"):
region = os.path.basename(os.path.dirname(path))
labels = cn_labels if region == "Chinese" else en_labels
data = {
"audio": path,
"mel": "",
"instrument": labels.iloc[i]["instrument_name"],
"slim": labels.iloc[i]["slim"],
"bright": labels.iloc[i]["bright"],
"dim": labels.iloc[i]["dim"],
"sharp": labels.iloc[i]["sharp"],
"thick": labels.iloc[i]["thick"],
"thin": labels.iloc[i]["thin"],
"solid": labels.iloc[i]["solid"],
"clear": labels.iloc[i]["clear"],
"dry": labels.iloc[i]["dry"],
"plump": labels.iloc[i]["plump"],
"rough": labels.iloc[i]["rough"],
"pure": labels.iloc[i]["pure"],
"hoarse": labels.iloc[i]["hoarse"],
"harmonious": labels.iloc[i]["harmonious"],
"soft": labels.iloc[i]["soft"],
"turbid": labels.iloc[i]["turbid"],
}
if region == "Chinese":
cn_dataset[i] = data
else:
en_dataset[i] = data
for path in dl_manager.iter_files([mel_files]):
fname = os.path.basename(path)
i = int(fname.split(".jp")[0]) - 1
if fname.endswith(".jpg"):
if os.path.basename(os.path.dirname(path)) == "Chinese":
cn_dataset[i]["mel"] = path
else:
en_dataset[i]["mel"] = path
return [
datasets.SplitGenerator(
name="Chinese",
gen_kwargs={
"files": [cn_dataset[k] for k in sorted(cn_dataset)],
},
),
datasets.SplitGenerator(
name="Western",
gen_kwargs={
"files": [en_dataset[k] for k in sorted(en_dataset)],
},
),
]
def _generate_examples(self, files):
for i, path in enumerate(files):
yield i, path
|