admin commited on
Commit
f54b245
·
1 Parent(s): b4c9293

add sscript

Browse files
Files changed (2) hide show
  1. README.md +143 -1
  2. song_structure.py +117 -0
README.md CHANGED
@@ -1,3 +1,145 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-nc-nd-4.0
3
+ task_categories:
4
+ - time-series-forecasting
5
+ language:
6
+ - en
7
+ tags:
8
+ - music
9
+ - art
10
+ pretty_name: Song Structure Annotation Database
11
+ size_categories:
12
+ - n<1K
13
+ viewer: false
14
  ---
15
+
16
+ # Dataset Card for Song Structure
17
+ The raw dataset comprises 300 pop songs in .mp3 format, sourced from the NetEase music, accompanied by a structure annotation file for each song in .txt format. The annotator for music structure is a professional musician and teacher from the China Conservatory of Music. For the statistics of the dataset, there are 208 Chinese songs, 87 English songs, three Korean songs and two Japanese songs. The song structures are labeled as follows: intro, re-intro, verse, chorus, pre-chorus, post-chorus, bridge, interlude and ending. Fig. 7 shows the frequency of each segment label that appears in the set. The labels chorus and verse are the two most prevalent segment labels in the dataset and they are the most common segment in Western popular music. Among them, the number of “Postchorus” tags is the least, with only two present.
18
+
19
+ ## Viewer
20
+ <https://www.modelscope.cn/datasets/ccmusic-database/song_structure/dataPeview>
21
+
22
+ ## Dataset Structure
23
+ <style>
24
+ .datastructure td {
25
+ vertical-align: middle !important;
26
+ text-align: center;
27
+ }
28
+ .datastructure th {
29
+ text-align: center;
30
+ }
31
+ </style>
32
+ <table class="datastructure">
33
+ <tr>
34
+ <th>audio(.mp3, 22050Hz)</th>
35
+ <th>mel(.jpg, 22050Hz)</th>
36
+ <th>label</th>
37
+ </tr>
38
+ <tr>
39
+ <td><audio controls src="https://huggingface.co/datasets/ccmusic-database/song_structure/resolve/main/data/Pentatonix%20-%20Valentine.mp3"></td>
40
+ <td><img src="./data/Pentatonix - Valentine.jpg"></td>
41
+ <td>{onset_time:uint32,offset_time:uint32,structure:string}</td>
42
+ </tr>
43
+ <tr>
44
+ <td>...</td>
45
+ <td>...</td>
46
+ <td>...</td>
47
+ </tr>
48
+ </table>
49
+
50
+ ## Maintenance
51
+ ```bash
52
+ GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/song_structure
53
+ cd song_structure
54
+ ```
55
+
56
+ ### Data Instances
57
+ .zip(.mp3), .txt
58
+
59
+ ### Data Fields
60
+ ```txt
61
+ intro, chorus, verse, pre-chorus, post-chorus, bridge, ending
62
+ ```
63
+ <img src="https://www.modelscope.cn/api/v1/datasets/ccmusic-database/song_structure/repo?Revision=master&FilePath=.%2Fdata%2Fmsa.png&View=true">
64
+
65
+ ### Data Splits
66
+ train
67
+
68
+ ## Dataset Description
69
+ - **Homepage:** <https://ccmusic-database.github.io>
70
+ - **Repository:** <https://huggingface.co/datasets/ccmusic-database/song_structure>
71
+ - **Paper:** <https://doi.org/10.5281/zenodo.5676893>
72
+ - **Leaderboard:** <https://ccmusic-database.github.io/team.html>
73
+ - **Point of Contact:** <https://www.modelscope.cn/datasets/ccmusic-database/song_structure>
74
+
75
+ ### Dataset Summary
76
+ Unlike the above three datasets for classification, this one has not undergone pre-processing such as spectrogram transform. Thus we provide the original content only. The integrated version of the dataset is organized based on audio files, with each item structured into three columns: The first column contains the audio of the song in .mp3 format, sampled at 22,050 Hz. The second column consists of lists indicating the time points that mark the boundaries of different song sections, while the third column contains lists corresponding to the labels of the song structures listed in the second column. Strictly speaking, the first column represents the data, while the subsequent two columns represent the label.
77
+
78
+ ### Supported Tasks and Leaderboards
79
+ time-series-forecasting
80
+
81
+ ### Languages
82
+ Chinese, English
83
+
84
+ ## Usage
85
+ ```python
86
+ from datasets import load_dataset
87
+
88
+ dataset = load_dataset("ccmusic-database/song_structure", split="train")
89
+ for item in ds:
90
+ print(item)
91
+ ```
92
+
93
+ ## Dataset Creation
94
+ ### Curation Rationale
95
+ Lack of a dataset for song structure
96
+
97
+ ### Source Data
98
+ #### Initial Data Collection and Normalization
99
+ Zhaorui Liu, Monan Zhou
100
+
101
+ #### Who are the source language producers?
102
+ Students from CCMUSIC
103
+
104
+ ### Annotations
105
+ #### Annotation process
106
+ Students from CCMUSIC collected 300 pop songs, as well as a structure annotation file for each song
107
+
108
+ #### Who are the annotators?
109
+ Students from CCMUSIC
110
+
111
+ ### Personal and Sensitive Information
112
+ Due to copyright issues with the original music, only features of audio by frame are provided in the dataset
113
+
114
+ ## Considerations for Using the Data
115
+ ### Social Impact of Dataset
116
+ Promoting the development of the AI music industry
117
+
118
+ ### Discussion of Biases
119
+ Only for mp3
120
+
121
+ ### Other Known Limitations
122
+ Most are Chinese songs
123
+
124
+ ## Additional Information
125
+ ### Dataset Curators
126
+ Zijin Li
127
+
128
+ ### Evaluation
129
+ <https://www.modelscope.cn/models/ccmusic-database/song_structure>
130
+
131
+ ### Citation Information
132
+ ```bibtex
133
+ @dataset{zhaorui_liu_2021_5676893,
134
+ author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
135
+ title = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
136
+ month = {mar},
137
+ year = {2024},
138
+ publisher = {HuggingFace},
139
+ version = {1.2},
140
+ url = {https://huggingface.co/ccmusic-database}
141
+ }
142
+ ```
143
+
144
+ ### Contributions
145
+ Provide a dataset for song structure
song_structure.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import csv
3
+ import random
4
+ import hashlib
5
+ import datasets
6
+
7
+ _DBNAME = os.path.basename(__file__).split(".")[0]
8
+
9
+ _HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{_DBNAME}"
10
+
11
+ _DOMAIN = f"https://www.modelscope.cn/api/v1/datasets/ccmusic-database/{_DBNAME}/repo?Revision=master&FilePath=data"
12
+
13
+ _CITATION = """\
14
+ @dataset{zhaorui_liu_2021_5676893,
15
+ author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
16
+ title = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
17
+ month = {mar},
18
+ year = {2024},
19
+ publisher = {HuggingFace},
20
+ version = {1.2},
21
+ url = {https://huggingface.co/ccmusic-database}
22
+ }
23
+ """
24
+
25
+ _DESCRIPTION = """\
26
+ The raw dataset comprises 300 pop songs in .mp3 format, sourced from the NetEase music, accompanied by a structure annotation file for each song in .txt format. The annotator for music structure is a professional musician and teacher from the China Conservatory of Music. For the statistics of the dataset, there are 208 Chinese songs, 87 English songs, three Korean songs and two Japanese songs. The song structures are labeled as follows: intro, re-intro, verse, chorus, pre-chorus, post-chorus, bridge, interlude and ending. Fig. 7 shows the frequency of each segment label that appears in the set. The labels chorus and verse are the two most prevalent segment labels in the dataset and they are the most common segment in Western popular music. Among them, the number of “Postchorus” tags is the least, with only two present.
27
+
28
+ Unlike the above three datasets for classification, this one has not undergone pre-processing such as spectrogram transform. Thus we provide the original content only. The integrated version of the dataset is organized based on audio files, with each item structured into three columns: The first column contains the audio of the song in .mp3 format, sampled at 44,100 Hz. The second column consists of lists indicating the time points that mark the boundaries of different song sections, while the third column contains lists corresponding to the labels of the song structures listed in the second column. Strictly speaking, the first column represents the data, while the subsequent two columns represent the label.
29
+ """
30
+
31
+ _URLS = {
32
+ "audio": f"{_DOMAIN}/audio.zip",
33
+ "mel": f"{_DOMAIN}/mel.zip",
34
+ "label": f"{_DOMAIN}/label.zip",
35
+ }
36
+
37
+
38
+ class song_structure(datasets.GeneratorBasedBuilder):
39
+ def _info(self):
40
+ return datasets.DatasetInfo(
41
+ features=datasets.Features(
42
+ {
43
+ "audio": datasets.Audio(sampling_rate=22050),
44
+ "mel": datasets.Image(),
45
+ "label": datasets.Sequence(
46
+ feature={
47
+ "onset_time": datasets.Value("uint32"),
48
+ "offset_time": datasets.Value("uint32"),
49
+ "structure": datasets.Value("string"),
50
+ }
51
+ ),
52
+ }
53
+ ),
54
+ supervised_keys=("audio", "label"),
55
+ homepage=_HOMEPAGE,
56
+ license="CC-BY-NC-ND",
57
+ version="1.2.0",
58
+ citation=_CITATION,
59
+ description=_DESCRIPTION,
60
+ )
61
+
62
+ def _parse_txt_label(self, txt_file):
63
+ label = []
64
+ with open(txt_file, mode="r", encoding="utf-8") as file:
65
+ reader = csv.reader(file, delimiter="\t")
66
+ for row in reader:
67
+ if len(row) == 3:
68
+ label.append(
69
+ {
70
+ "onset_time": int(row[0]),
71
+ "offset_time": int(row[1]),
72
+ "structure": str(row[2]),
73
+ }
74
+ )
75
+
76
+ return label
77
+
78
+ def _str2md5(self, original_string: str):
79
+ md5_obj = hashlib.md5()
80
+ md5_obj.update(original_string.encode("utf-8"))
81
+ return md5_obj.hexdigest()
82
+
83
+ def _split_generators(self, dl_manager):
84
+ audio_files = dl_manager.download_and_extract(_URLS["audio"])
85
+ mel_files = dl_manager.download_and_extract(_URLS["mel"])
86
+ txt_files = dl_manager.download_and_extract(_URLS["label"])
87
+ files = {}
88
+ for path in dl_manager.iter_files([audio_files]):
89
+ fname: str = os.path.basename(path)
90
+ if fname.endswith(".mp3"):
91
+ item_id = self._str2md5(fname.split(".mp")[0])
92
+ files[item_id] = {"audio": path}
93
+
94
+ for path in dl_manager.iter_files([mel_files]):
95
+ fname: str = os.path.basename(path)
96
+ if fname.endswith(".jpg"):
97
+ item_id = self._str2md5(fname.split(".jp")[0])
98
+ files[item_id]["mel"] = path
99
+
100
+ for path in dl_manager.iter_files([txt_files]):
101
+ fname: str = os.path.basename(path)
102
+ if fname.endswith(".txt"):
103
+ item_id = self._str2md5(fname.split(".tx")[0])
104
+ files[item_id]["label"] = self._parse_txt_label(path)
105
+
106
+ dataset = list(files.values())
107
+ random.shuffle(dataset)
108
+
109
+ return [
110
+ datasets.SplitGenerator(
111
+ name=datasets.Split.TRAIN, gen_kwargs={"files": dataset}
112
+ ),
113
+ ]
114
+
115
+ def _generate_examples(self, files):
116
+ for i, path in enumerate(files):
117
+ yield i, path