Datasets:
ccvl
/

DOI:
License:
File size: 1,847 Bytes
01ed736
1d46bda
01ed736
 
 
 
 
a5bbe3c
01ed736
a5bbe3c
01ed736
 
 
a5bbe3c
 
01ed736
 
a5bbe3c
 
01ed736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
license: cc-by-nc-4.0
pretty_name: imagenet3d
extra_gated_fields:
  Name: text
  Affiliation: text
---
## ImageNet3D

Refer to [github.com/wufeim/imagenet3d](https://github.com/wufeim/imagenet3d) for the full documentation and sample preprocessing code for ImageNet3D.

### Download Data

Directly download from the HuggingFace WebUI, or on a server, run

```py
from huggingface_hub import hf_hub_download
local_path = '/your/local/directory'
hf_hub_download(repo_id='ccvl/ImageNet3D', repo_type='dataset', filename='imagenet3d_0409.zip', local_dir=local_path, local_dir_use_symlinks=False)
```

### Example Usage

```py
from PIL import Image
import numpy as np

img_path = 'imagenet3d/bed/n02818832_13.JPEG'
annot_path = 'imagenet3d/bed/n02818832_13.npz'

img = np.array(Image.open(img_path).convert('RGB'))
annot = dict(np.load(annot_path, allow_pickle=True))['annotations']

# Number of objects
num_objects = len(annot)

# Annotation of the first object
azimuth = annot[0]['azimuth']  # float, [0, 2*pi]
elevation = annot[0]['elevation']  # float, [0, 2*pi]
theta = annot[0]['theta']  # float, [0, 2*pi]
cad_index = annot[0]['cad_index']  # int
distance = annot[0]['distance']  # float
viewport = annot[0]['viewport']  # int
img_height = annot[0]['height']  # numpy.uint16
img_width = annot[0]['width']  # numpy.uint16
bbox = annot[0]['bbox']  # numpy.ndarray, (x1, y1, x2, y2)
category = annot[0]['class']  # str
principal_x = annot[0]['px']  # float
principal_y = annot[0]['py']  # float

# label indicating the quality of the object, occluded or low quality
object_status = annot[0]['object_status']  # str, one of ('status_good', 'status_partially', 'status_barely', 'status_bad')

# label indicating if multiple objects from same category very close to each other
dense = annot[0]['dense']  # str, one of ('dense_yes', 'dense_no')
```