File size: 21,249 Bytes
61fd3fa 5fa2de2 61fd3fa 02961c5 61fd3fa 2ebae65 61fd3fa 508d191 f7a1cfb 61fd3fa 5fa2de2 00ba0c6 508d191 01d5f4f 508d191 01d5f4f 508d191 00ba0c6 e0f64ef 9997395 b9661d6 01d5f4f 5fa2de2 61fd3fa 02961c5 61fd3fa 02961c5 01d5f4f 508d191 02961c5 508d191 02961c5 61fd3fa 02961c5 61fd3fa 01d5f4f 508d191 01d5f4f 508d191 01d5f4f 508d191 01d5f4f 508d191 01d5f4f 61fd3fa 01d5f4f 508d191 01d5f4f 508d191 61fd3fa 02961c5 58a2488 e9b9cd5 6bba779 5a56741 48bacc5 5a56741 e9b9cd5 48bacc5 e9b9cd5 9997395 02961c5 e9b9cd5 02961c5 61fd3fa 00ba0c6 61fd3fa 02961c5 61fd3fa 01d5f4f 508d191 61fd3fa 02961c5 01d5f4f 508d191 61fd3fa 02961c5 01d5f4f 508d191 61fd3fa 5fa2de2 01d5f4f 508d191 5fa2de2 d004e7b 5fa2de2 02961c5 61fd3fa 5fa2de2 d004e7b 5fa2de2 d004e7b f7a1cfb 61fd3fa d004e7b 61fd3fa f7a1cfb 61fd3fa 5fa2de2 e9b9cd5 5fa2de2 e9b9cd5 5fa2de2 b9661d6 4097551 b949ef2 9997395 b949ef2 9997395 b949ef2 01d5f4f 61fd3fa 01d5f4f f7a1cfb 61fd3fa f7a1cfb 61fd3fa f7a1cfb 61fd3fa f7a1cfb 61fd3fa f7a1cfb c213c69 f7a1cfb c213c69 f7a1cfb 4b43c77 f7a1cfb bfb9e3f 9c3c13b f7a1cfb 5a56741 f7a1cfb 508d191 5a56741 4b43c77 5a56741 f7a1cfb 5fa2de2 f7a1cfb d004e7b 9997395 18d6eb1 5fa2de2 48bacc5 5a56741 48bacc5 5fa2de2 9997395 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
# Import packages
import csv
import json
import os
from typing import Dict, List, Mapping, Optional, Set, Sequence, Tuple, Union
import numpy as np
import pandas as pd
import datasets
import skimage
import SimpleITK as sitk
# Define functions
def import_csv_data(filepath: str) -> List[Dict[str, str]]:
"""Import all rows of CSV file."""
results = []
with open(filepath, encoding='utf-8') as f:
reader = csv.DictReader(f)
for line in reader:
results.append(line)
return results
def standardize_3D_image(
image: np.ndarray,
resize_shape: Tuple[int, int, int]
) -> np.ndarray:
"""Aligns dimensions of image to be (height, width, channels) and resizes
images to values specified in resize_shape."""
# Align height, width, channel dims
if image.shape[0] < image.shape[2]:
image = np.transpose(image, axes=[1, 2, 0])
# Resize image
image = skimage.transform.resize(image, resize_shape)
return image
# Define constants
N_PATIENTS = 218
MIN_IVD = 0
MAX_IVD = 9
DEFAULT_SCAN_TYPES = ['t1', 't2', 't2_SPACE']
DEFAULT_RESIZE = (512, 512, 30)
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
_HOMEPAGE = "https://zenodo.org/records/10159290"
_LICENSE = """Creative Commons Attribution 4.0 International License \
(https://creativecommons.org/licenses/by/4.0/legalcode)"""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"images":"https://zenodo.org/records/10159290/files/images.zip",
"masks":"https://zenodo.org/records/10159290/files/masks.zip",
"overview":"https://zenodo.org/records/10159290/files/overview.csv",
"gradings":"https://zenodo.org/records/10159290/files/radiological_gradings.csv",
}
class CustomBuilderConfig(datasets.BuilderConfig):
def __init__(
self,
name: str = 'default',
version: str = '0.0.0',
data_dir: Optional[str] = None,
data_files: Optional[Union[str, Sequence, Mapping]] = None,
description: Optional[str] = None,
scan_types: List[str] = DEFAULT_SCAN_TYPES,
resize_shape: Tuple[int, int, int] = DEFAULT_RESIZE,
):
super().__init__(name, version, data_dir, data_files, description)
self.scan_types = scan_types
self.resize_shape = resize_shape
class SPIDER(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIG_CLASS = CustomBuilderConfig
# BUILDER_CONFIGS = [
# CustomBuilderConfig(
# name="all_scan_types",
# version=VERSION,
# description="Use images of all scan types (t1, t2, t2 SPACE)",
# scan_types=['t1', 't2', 't2_SPACE'],
# resize_shape=DEFAULT_RESIZE,
# ),
# CustomBuilderConfig(
# name="t1_scan_types",
# version=VERSION,
# description="Use images of t1 scan types only",
# scan_types=['t1'],
# resize_shape=DEFAULT_RESIZE,
# ),
# CustomBuilderConfig(
# name="t2_scan_types",
# version=VERSION,
# description="Use images of t2 scan types only",
# scan_types=['t2'],
# resize_shape=DEFAULT_RESIZE,
# ),
# CustomBuilderConfig(
# name="t2_SPACE_scan_types",
# version=VERSION,
# description="Use images of t2 SPACE scan types only",
# scan_types=['t2_SPACE'],
# resize_shape=DEFAULT_RESIZE,
# ),
# ]
# DEFAULT_CONFIG_NAME = "all_scan_types"
def __init__(
self,
*args,
scan_types: List[str] = DEFAULT_SCAN_TYPES,
resize_shape: Tuple[int, int, int] = DEFAULT_RESIZE,
**kwargs,
):
super().__init__(*args, **kwargs)
self.scan_types = scan_types
self.resize_shape = resize_shape
def _info(self):
"""
This method specifies the datasets.DatasetInfo object which contains
informations and typings for the dataset.
"""
image_size = self.config.resize_shape
features = datasets.Features({
"patient_id": datasets.Value("string"),
"scan_type": datasets.Value("string"),
# "raw_image": datasets.Image(),
"image_array": datasets.Array3D(shape=image_size, dtype='float64'),
# "raw_mask": datasets.Image(),
"mask_array": datasets.Array3D(shape=image_size, dtype='float64'),
"metadata": {
"num_vertebrae": datasets.Value(dtype="string"), #TODO: more specific types
"num_discs": datasets.Value(dtype="string"),
"sex": datasets.Value(dtype="string"),
"birth_date": datasets.Value(dtype="string"),
"AngioFlag": datasets.Value(dtype="string"),
"BodyPartExamined": datasets.Value(dtype="string"),
"DeviceSerialNumber": datasets.Value(dtype="string"),
"EchoNumbers": datasets.Value(dtype="string"),
"EchoTime": datasets.Value(dtype="string"),
"EchoTrainLength": datasets.Value(dtype="string"),
"FlipAngle": datasets.Value(dtype="string"),
"ImagedNucleus": datasets.Value(dtype="string"),
"ImagingFrequency": datasets.Value(dtype="string"),
"InPlanePhaseEncodingDirection": datasets.Value(dtype="string"),
"MRAcquisitionType": datasets.Value(dtype="string"),
"MagneticFieldStrength": datasets.Value(dtype="string"),
"Manufacturer": datasets.Value(dtype="string"),
"ManufacturerModelName": datasets.Value(dtype="string"),
"NumberOfPhaseEncodingSteps": datasets.Value(dtype="string"),
"PercentPhaseFieldOfView": datasets.Value(dtype="string"),
"PercentSampling": datasets.Value(dtype="string"),
"PhotometricInterpretation": datasets.Value(dtype="string"),
"PixelBandwidth": datasets.Value(dtype="string"),
"PixelSpacing": datasets.Value(dtype="string"),
"RepetitionTime": datasets.Value(dtype="string"),
"SAR": datasets.Value(dtype="string"),
"SamplesPerPixel": datasets.Value(dtype="string"),
"ScanningSequence": datasets.Value(dtype="string"),
"SequenceName": datasets.Value(dtype="string"),
"SeriesDescription": datasets.Value(dtype="string"),
"SliceThickness": datasets.Value(dtype="string"),
"SoftwareVersions": datasets.Value(dtype="string"),
"SpacingBetweenSlices": datasets.Value(dtype="string"),
"SpecificCharacterSet": datasets.Value(dtype="string"),
"TransmitCoilName": datasets.Value(dtype="string"),
"WindowCenter": datasets.Value(dtype="string"),
"WindowWidth": datasets.Value(dtype="string"),
},
"rad_gradings": {
"IVD label": datasets.Sequence(datasets.Value("string")),
"Modic": datasets.Sequence(datasets.Value("string")),
"UP endplate": datasets.Sequence(datasets.Value("string")),
"LOW endplate": datasets.Sequence(datasets.Value("string")),
"Spondylolisthesis": datasets.Sequence(datasets.Value("string")),
"Disc herniation": datasets.Sequence(datasets.Value("string")),
"Disc narrowing": datasets.Sequence(datasets.Value("string")),
"Disc bulging": datasets.Sequence(datasets.Value("string")),
"Pfirrman grade": datasets.Sequence(datasets.Value("string")),
}
})
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""
This method is tasked with downloading/extracting the data
and defining the splits depending on the configuration
If several configurations are possible (listed in BUILDER_CONFIGS),
the configuration selected by the user is in self.config.name
"""
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
paths_dict = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"paths_dict": paths_dict,
"split": "train",
"scan_types": self.scan_types,
"resize_shape": self.resize_shape,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"paths_dict": paths_dict,
"split": "validate",
"scan_types": self.scan_types,
"resize_shape": self.resize_shape,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"paths_dict": paths_dict,
"split": "test",
"scan_types": self.scan_types,
"resize_shape": self.resize_shape,
},
),
]
def _generate_examples(
self,
paths_dict: Dict[str, str],
split: str,
scan_types: List[str],
resize_shape: Tuple[int, int, int],
validate_share: float = 0.3,
test_share: float = 0.2,
random_seed: int = 9999,
) -> Tuple[str, Dict]:
"""
This method handles input defined in _split_generators to yield
(key, example) tuples from the dataset. The `key` is for legacy reasons
(tfds) and is not important in itself, but must be unique for each example.
Args
paths_dict: mapping of data element name to temporary file location
split: specify training, validation, or testing set;
options = 'train', 'validate', OR 'test'
scan_types: list of sagittal scan types to use in examples;
options = ['t1', 't2', 't2_SPACE']
validate_share: float indicating share of data to use for validation;
must be in range (0.0, 1.0); note that training share is
calculated as (1 - validate_share - test_share)
test_share: float indicating share of data to use for testing;
must be in range (0.0, 1.0); note that training share is
calculated as (1 - validate_share - test_share)
Yields
Tuple (unique patient-scan ID, dict of
"""
# Set constants
train_share = (1.0 - validate_share - test_share)
np.random.seed(int(random_seed))
# Validate params
for item in scan_types:
if item not in ['t1', 't2', 't2_SPACE']:
raise ValueError(
'Scan type "{item}" not recognized as valid scan type.\
Verify scan type argument.'
)
if split not in ['train', 'validate', 'test']:
raise ValueError(
f'Split argument "{split}" is not recognized. \
Please enter one of ["train", "validate", "test"]'
)
if train_share <= 0.0:
raise ValueError(
f'Training share is calculated as (1 - validate_share - test_share) \
and must be greater than 0. Current calculated value is \
{round(train_share, 3)}. Adjust validate_share and/or \
test_share parameters.'
)
if validate_share > 1.0 or validate_share < 0.0:
raise ValueError(
f'Validation share must be between (0, 1). Current value is \
{validate_share}.'
)
if test_share > 1.0 or test_share < 0.0:
raise ValueError(
f'Testing share must be between (0, 1). Current value is \
{test_share}.'
)
# Generate train/validate/test partitions of patient IDs
partition = np.random.choice(
['train', 'dev', 'test'],
p=[train_share, validate_share, test_share],
size=N_PATIENTS,
)
patient_ids = (np.arange(N_PATIENTS) + 1)
train_ids = set(patient_ids[partition == 'train'])
validate_ids = set(patient_ids[partition == 'dev'])
test_ids = set(patient_ids[partition == 'test'])
assert len(train_ids.union(validate_ids, test_ids)) == N_PATIENTS
# Import patient/scanner data and radiological gradings data
overview_data = import_csv_data(paths_dict['overview'])
grades_data = import_csv_data(paths_dict['gradings'])
# Convert overview data list of dicts to dict of dicts
exclude_vars = ['new_file_name', 'subset'] # Original data only lists train and validate
overview_dict = {}
for item in overview_data:
key = item['new_file_name']
overview_dict[key] = {
k:v for k,v in item.items() if k not in exclude_vars
}
# # Determine maximum number of radiological gradings per patient
# max_ivd = 0
# for temp_dict_1 in grades_dict.values():
# for temp_dict_2 in temp_dict_1:
# if int(temp_dict_2['IVD label']) > max_ivd:
# max_ivd = int(temp_dict_2['IVD label'])
# Merge patient records for radiological gradings data
grades_dict = {}
for patient_id in patient_ids:
patient_grades = [
x for x in grades_data if x['Patient'] == str(patient_id)
]
# Pad so that all patients have same number of IVD observations
IVD_values = [x['IVD label'] for x in patient_grades]
for i in range(MIN_IVD, MAX_IVD + 1):
if str(i) not in IVD_values:
patient_grades.append({
"Patient": f"{patient_id}",
"IVD label": f"{i}",
"Modic": "",
"UP endplate": "",
"LOW endplate": "",
"Spondylolisthesis": "",
"Disc herniation": "",
"Disc narrowing": "",
"Disc bulging": "",
"Pfirrman grade": "",
})
assert len(patient_grades) == (MAX_IVD - MIN_IVD + 1), "Radiological\
gradings not padded correctly"
# Convert to sequences
df = (
pd.DataFrame(patient_grades)
.sort_values("IVD label")
.reset_index(drop=True)
)
grades_dict[str(patient_id)] = {
col:df[col].tolist() for col in df.columns
if col not in ['Patient']
}
# Get list of image and mask data files
image_files = [
file for file in os.listdir(os.path.join(paths_dict['images'], 'images'))
if file.endswith('.mha')
]
assert len(image_files) > 0, "No image files found--check directory path."
mask_files = [
file for file in os.listdir(os.path.join(paths_dict['masks'], 'masks'))
if file.endswith('.mha')
]
assert len(mask_files) > 0, "No mask files found--check directory path."
# Filter image and mask data files based on scan types
image_files = [
file for file in image_files
if any(scan_type in file for scan_type in scan_types)
]
mask_files = [
file for file in mask_files
if any(scan_type in file for scan_type in scan_types)
]
# Subset train/validation/test partition images and mask files
if split == 'train':
subset_ids = train_ids
elif split == 'validate':
subset_ids = validate_ids
elif split == 'test':
subset_ids = test_ids
image_files = [
file for file in image_files
if any(str(patient_id) == file.split('_')[0] for patient_id in subset_ids)
]
mask_files = [
file for file in mask_files
if any(str(patient_id) == file.split('_')[0] for patient_id in subset_ids)
]
assert len(image_files) == len(mask_files), "The number of image files\
does not match the number of mask files--verify subsetting operation."
# Shuffle order of patient scans
# (note that only images need to be shuffled since masks and metadata
# will be linked to the selected image)
np.random.shuffle(image_files)
## Generate next example
# ----------------------
for idx, example in enumerate(image_files):
# Extract linking data
scan_id = example.replace('.mha', '')
patient_id = scan_id.split('_')[0]
scan_type = '_'.join(scan_id.split('_')[1:])
# Load .mha image file
image_path = os.path.join(paths_dict['images'], 'images', example)
image = sitk.ReadImage(image_path)
# Convert .mha image to standardized numeric array
image_array = standardize_3D_image(
sitk.GetArrayFromImage(image), resize_shape
)
# Load .mha mask file
mask_path = os.path.join(paths_dict['masks'], 'masks', example)
mask = sitk.ReadImage(mask_path)
# Convert .mha mask to standardized numeric array
mask_array = standardize_3D_image(
sitk.GetArrayFromImage(mask), resize_shape
)
# Extract overview data corresponding to image
image_overview = overview_dict[scan_id]
# Extract patient radiological gradings corresponding to patient
patient_grades_dict = grades_dict[patient_id]
# Prepare example return dict
return_dict = {
'patient_id':patient_id,
'scan_type':scan_type,
'raw_image':None, #TODO
'raw_mask':None, #TODO
'image_array':image_array,
'mask_array':mask_array,
'metadata':image_overview,
'rad_gradings':patient_grades_dict,
}
# Yield example
yield scan_id, return_dict
|