Chris Oswald commited on
Commit
81b3fb4
·
1 Parent(s): 76cb606

cleaned up comments

Browse files
Files changed (1) hide show
  1. SPIDER.py +19 -88
SPIDER.py CHANGED
@@ -11,20 +11,17 @@
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
- # TODO: Address all TODOs and remove all explanatory comments
15
- """TODO: Add a description here."""
16
 
17
  # Import packages
18
  import csv
19
- import json
20
  import os
21
- from typing import Dict, List, Mapping, Optional, Set, Sequence, Tuple, Union
22
 
23
  import numpy as np
24
  import pandas as pd
25
 
26
  import datasets
27
- import PIL
28
  import skimage
29
  import SimpleITK as sitk
30
 
@@ -59,14 +56,17 @@ MAX_IVD = 9
59
  DEFAULT_SCAN_TYPES = ['t1', 't2', 't2_SPACE']
60
  DEFAULT_RESIZE = (512, 512, 30)
61
 
62
- # TODO: Add BibTeX citation
63
- # Find for instance the citation on arxiv or on the dataset repo/website
64
  _CITATION = """\
65
- @InProceedings{huggingface:dataset,
66
- title = {A great new dataset},
67
- author={huggingface, Inc.
68
- },
69
- year={2020}
 
 
 
 
 
70
  }
71
  """
72
 
@@ -81,9 +81,6 @@ _HOMEPAGE = "https://zenodo.org/records/10159290"
81
  _LICENSE = """Creative Commons Attribution 4.0 International License \
82
  (https://creativecommons.org/licenses/by/4.0/legalcode)"""
83
 
84
- # TODO: Add link to the official dataset URLs here
85
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
86
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
87
  _URLS = {
88
  "images":"https://zenodo.org/records/10159290/files/images.zip",
89
  "masks":"https://zenodo.org/records/10159290/files/masks.zip",
@@ -111,45 +108,11 @@ class CustomBuilderConfig(datasets.BuilderConfig):
111
  class SPIDER(datasets.GeneratorBasedBuilder):
112
  """TODO: Short description of my dataset."""
113
 
 
114
  DEFAULT_WRITER_BATCH_SIZE = 16 # PyArrow default is too large for image data
115
-
116
  VERSION = datasets.Version("1.1.0")
117
-
118
  BUILDER_CONFIG_CLASS = CustomBuilderConfig
119
 
120
- # BUILDER_CONFIGS = [
121
- # CustomBuilderConfig(
122
- # name="all_scan_types",
123
- # version=VERSION,
124
- # description="Use images of all scan types (t1, t2, t2 SPACE)",
125
- # scan_types=['t1', 't2', 't2_SPACE'],
126
- # resize_shape=DEFAULT_RESIZE,
127
- # ),
128
- # CustomBuilderConfig(
129
- # name="t1_scan_types",
130
- # version=VERSION,
131
- # description="Use images of t1 scan types only",
132
- # scan_types=['t1'],
133
- # resize_shape=DEFAULT_RESIZE,
134
- # ),
135
- # CustomBuilderConfig(
136
- # name="t2_scan_types",
137
- # version=VERSION,
138
- # description="Use images of t2 scan types only",
139
- # scan_types=['t2'],
140
- # resize_shape=DEFAULT_RESIZE,
141
- # ),
142
- # CustomBuilderConfig(
143
- # name="t2_SPACE_scan_types",
144
- # version=VERSION,
145
- # description="Use images of t2 SPACE scan types only",
146
- # scan_types=['t2_SPACE'],
147
- # resize_shape=DEFAULT_RESIZE,
148
- # ),
149
- # ]
150
-
151
- # DEFAULT_CONFIG_NAME = "all_scan_types"
152
-
153
  def __init__(
154
  self,
155
  *args,
@@ -162,10 +125,9 @@ class SPIDER(datasets.GeneratorBasedBuilder):
162
  self.resize_shape = resize_shape
163
 
164
  def _info(self):
165
- """
166
- This method specifies the datasets.DatasetInfo object which contains
167
- informations and typings for the dataset.
168
- """
169
  image_size = self.config.resize_shape
170
  features = datasets.Features({
171
  "patient_id": datasets.Value("string"),
@@ -227,32 +189,16 @@ class SPIDER(datasets.GeneratorBasedBuilder):
227
  })
228
 
229
  return datasets.DatasetInfo(
230
- # This is the description that will appear on the datasets page.
231
  description=_DESCRIPTION,
232
- # This defines the different columns of the dataset and their types
233
- features=features, # Here we define them above because they are different between the two configurations
234
- # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
235
- # specify them. They'll be used if as_supervised=True in builder.as_dataset.
236
- # supervised_keys=("sentence", "label"),
237
- # Homepage of the dataset for documentation
238
  homepage=_HOMEPAGE,
239
- # License for the dataset if available
240
  license=_LICENSE,
241
- # Citation for the dataset
242
  citation=_CITATION,
243
  )
244
 
245
  def _split_generators(self, dl_manager):
246
- """
247
- This method is tasked with downloading/extracting the data
248
- and defining the splits depending on the configuration
249
- If several configurations are possible (listed in BUILDER_CONFIGS),
250
- the configuration selected by the user is in self.config.name
251
- """
252
 
253
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
254
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
255
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
256
  paths_dict = dl_manager.download_and_extract(_URLS)
257
  return [
258
  datasets.SplitGenerator(
@@ -373,13 +319,6 @@ class SPIDER(datasets.GeneratorBasedBuilder):
373
  overview_dict[key] = {
374
  k:v for k,v in item.items() if k not in exclude_vars
375
  }
376
-
377
- # # Determine maximum number of radiological gradings per patient
378
- # max_ivd = 0
379
- # for temp_dict_1 in grades_dict.values():
380
- # for temp_dict_2 in temp_dict_1:
381
- # if int(temp_dict_2['IVD label']) > max_ivd:
382
- # max_ivd = int(temp_dict_2['IVD label'])
383
 
384
  # Merge patient records for radiological gradings data
385
  grades_dict = {}
@@ -478,10 +417,7 @@ class SPIDER(datasets.GeneratorBasedBuilder):
478
  # Load .mha image file
479
  image_path = os.path.join(paths_dict['images'], 'images', example)
480
  image = sitk.ReadImage(image_path)
481
-
482
- # # Rescale image intensities to [0, 255] and cast as UInt8 type
483
- # image = sitk.Cast(sitk.RescaleIntensity(image), sitk.sitkUInt8)
484
-
485
  # Convert .mha image to original size numeric array
486
  image_array_original = sitk.GetArrayFromImage(image)
487
 
@@ -491,14 +427,9 @@ class SPIDER(datasets.GeneratorBasedBuilder):
491
  resize_shape,
492
  )
493
 
494
- # NOTE: since the original array shape is not standardized, cannot return in dataset
495
-
496
  # Load .mha mask file
497
  mask_path = os.path.join(paths_dict['masks'], 'masks', example)
498
  mask = sitk.ReadImage(mask_path)
499
-
500
- # # Rescale mask intensities to [0, 255] and cast as UInt8 type
501
- # mask = sitk.Cast(sitk.RescaleIntensity(mask), sitk.sitkUInt8)
502
 
503
  # Convert .mha mask to original size numeric array
504
  mask_array_original = sitk.GetArrayFromImage(mask)
 
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
+ """TODO: Add a description here.""" #TODO
 
15
 
16
  # Import packages
17
  import csv
 
18
  import os
19
+ from typing import Dict, List, Mapping, Optional, Sequence, Tuple, Union
20
 
21
  import numpy as np
22
  import pandas as pd
23
 
24
  import datasets
 
25
  import skimage
26
  import SimpleITK as sitk
27
 
 
56
  DEFAULT_SCAN_TYPES = ['t1', 't2', 't2_SPACE']
57
  DEFAULT_RESIZE = (512, 512, 30)
58
 
 
 
59
  _CITATION = """\
60
+ @misc{vandergraaf2023lumbar,
61
+ title={Lumbar spine segmentation in MR images: a dataset and a public benchmark},
62
+ author={Jasper W. van der Graaf and Miranda L. van Hooff and \
63
+ Constantinus F. M. Buckens and Matthieu Rutten and \
64
+ Job L. C. van Susante and Robert Jan Kroeze and \
65
+ Marinus de Kleuver and Bram van Ginneken and Nikolas Lessmann},
66
+ year={2023},
67
+ eprint={2306.12217},
68
+ archivePrefix={arXiv},
69
+ primaryClass={eess.IV}
70
  }
71
  """
72
 
 
81
  _LICENSE = """Creative Commons Attribution 4.0 International License \
82
  (https://creativecommons.org/licenses/by/4.0/legalcode)"""
83
 
 
 
 
84
  _URLS = {
85
  "images":"https://zenodo.org/records/10159290/files/images.zip",
86
  "masks":"https://zenodo.org/records/10159290/files/masks.zip",
 
108
  class SPIDER(datasets.GeneratorBasedBuilder):
109
  """TODO: Short description of my dataset."""
110
 
111
+ # Class attributes
112
  DEFAULT_WRITER_BATCH_SIZE = 16 # PyArrow default is too large for image data
 
113
  VERSION = datasets.Version("1.1.0")
 
114
  BUILDER_CONFIG_CLASS = CustomBuilderConfig
115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
  def __init__(
117
  self,
118
  *args,
 
125
  self.resize_shape = resize_shape
126
 
127
  def _info(self):
128
+ """Specify datasets.DatasetInfo object containing information and typing
129
+ for the dataset."""
130
+
 
131
  image_size = self.config.resize_shape
132
  features = datasets.Features({
133
  "patient_id": datasets.Value("string"),
 
189
  })
190
 
191
  return datasets.DatasetInfo(
 
192
  description=_DESCRIPTION,
193
+ features=features,
 
 
 
 
 
194
  homepage=_HOMEPAGE,
 
195
  license=_LICENSE,
 
196
  citation=_CITATION,
197
  )
198
 
199
  def _split_generators(self, dl_manager):
200
+ """Download and extract data and define splits based on configuration."""
 
 
 
 
 
201
 
 
 
 
202
  paths_dict = dl_manager.download_and_extract(_URLS)
203
  return [
204
  datasets.SplitGenerator(
 
319
  overview_dict[key] = {
320
  k:v for k,v in item.items() if k not in exclude_vars
321
  }
 
 
 
 
 
 
 
322
 
323
  # Merge patient records for radiological gradings data
324
  grades_dict = {}
 
417
  # Load .mha image file
418
  image_path = os.path.join(paths_dict['images'], 'images', example)
419
  image = sitk.ReadImage(image_path)
420
+
 
 
 
421
  # Convert .mha image to original size numeric array
422
  image_array_original = sitk.GetArrayFromImage(image)
423
 
 
427
  resize_shape,
428
  )
429
 
 
 
430
  # Load .mha mask file
431
  mask_path = os.path.join(paths_dict['masks'], 'masks', example)
432
  mask = sitk.ReadImage(mask_path)
 
 
 
433
 
434
  # Convert .mha mask to original size numeric array
435
  mask_array_original = sitk.GetArrayFromImage(mask)