|
"""Cartoonset-10k Data Set""" |
|
|
|
|
|
from io import BytesIO |
|
from typing import Optional |
|
|
|
import tarfile |
|
import pandas as pd |
|
|
|
|
|
import datasets |
|
|
|
|
|
_CITATION = r""" |
|
@article{DBLP:journals/corr/abs-1711-05139, |
|
author = {Amelie Royer and |
|
Konstantinos Bousmalis and |
|
Stephan Gouws and |
|
Fred Bertsch and |
|
Inbar Mosseri and |
|
Forrester Cole and |
|
Kevin Murphy}, |
|
title = {{XGAN:} Unsupervised Image-to-Image Translation for many-to-many Mappings}, |
|
journal = {CoRR}, |
|
volume = {abs/1711.05139}, |
|
year = {2017}, |
|
url = {http://arxiv.org/abs/1711.05139}, |
|
eprinttype = {arXiv}, |
|
eprint = {1711.05139}, |
|
timestamp = {Mon, 13 Aug 2018 16:47:38 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-1711-05139.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Cartoon Set is a collection of random, 2D cartoon avatar images. The cartoons vary in 10 artwork |
|
categories, 4 color categories, and 4 proportion categories, with a total of ~1013 possible |
|
combinations. We provide sets of 10k and 100k randomly chosen cartoons and labeled attributes. |
|
""" |
|
|
|
_DATA_URLS = { |
|
"10k": "https://huggingface.co/datasets/cgarciae/cartoonset/resolve/1.0.0/data/cartoonset10k.tgz", |
|
"100k": "https://huggingface.co/datasets/cgarciae/cartoonset/resolve/1.0.0/data/cartoonset100k.tgz", |
|
} |
|
|
|
|
|
class Cartoonset(datasets.GeneratorBasedBuilder): |
|
"""Cartoonset-10k Data Set""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="10k", |
|
version=datasets.Version("1.0.0", ""), |
|
description="Loads the Cartoonset-10k Data Set (images only).", |
|
), |
|
datasets.BuilderConfig( |
|
name="10k+features", |
|
version=datasets.Version("1.0.0", ""), |
|
description="Loads the Cartoonset-10k Data Set (images and attributes).", |
|
), |
|
datasets.BuilderConfig( |
|
name="100k", |
|
version=datasets.Version("1.0.0", ""), |
|
description="Loads the Cartoonset-100k Data Set (images only).", |
|
), |
|
datasets.BuilderConfig( |
|
name="100k+features", |
|
version=datasets.Version("1.0.0", ""), |
|
description="Loads the Cartoonset-100k Data Set (images and attributes).", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "10k" |
|
|
|
def _info(self): |
|
features = {"img_bytes": datasets.Value("binary")} |
|
|
|
if self.config.name.endswith("+features"): |
|
features.update( |
|
{ |
|
"eye_angle": datasets.Value("int32"), |
|
"eye_angle_num_categories": datasets.Value("int32"), |
|
"eye_lashes": datasets.Value("int32"), |
|
"eye_lashes_num_categories": datasets.Value("int32"), |
|
"eye_lid": datasets.Value("int32"), |
|
"eye_lid_num_categories": datasets.Value("int32"), |
|
"chin_length": datasets.Value("int32"), |
|
"chin_length_num_categories": datasets.Value("int32"), |
|
"eyebrow_weight": datasets.Value("int32"), |
|
"eyebrow_weight_num_categories": datasets.Value("int32"), |
|
"eyebrow_shape": datasets.Value("int32"), |
|
"eyebrow_shape_num_categories": datasets.Value("int32"), |
|
"eyebrow_thickness": datasets.Value("int32"), |
|
"eyebrow_thickness_num_categories": datasets.Value("int32"), |
|
"face_shape": datasets.Value("int32"), |
|
"face_shape_num_categories": datasets.Value("int32"), |
|
"facial_hair": datasets.Value("int32"), |
|
"facial_hair_num_categories": datasets.Value("int32"), |
|
"hair": datasets.Value("int32"), |
|
"hair_num_categories": datasets.Value("int32"), |
|
"eye_color": datasets.Value("int32"), |
|
"eye_color_num_categories": datasets.Value("int32"), |
|
"face_color": datasets.Value("int32"), |
|
"face_color_num_categories": datasets.Value("int32"), |
|
"hair_color": datasets.Value("int32"), |
|
"hair_color_num_categories": datasets.Value("int32"), |
|
"glasses": datasets.Value("int32"), |
|
"glasses_num_categories": datasets.Value("int32"), |
|
"glasses_color": datasets.Value("int32"), |
|
"glasses_color_num_categories": datasets.Value("int32"), |
|
"eye_slant": datasets.Value("int32"), |
|
"eye_slant_num_categories": datasets.Value("int32"), |
|
"eyebrow_width": datasets.Value("int32"), |
|
"eyebrow_width_num_categories": datasets.Value("int32"), |
|
"eye_eyebrow_distance": datasets.Value("int32"), |
|
"eye_eyebrow_distance_num_categories": datasets.Value("int32"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features(features), |
|
supervised_keys=("img_bytes",), |
|
homepage="https://www.cs.toronto.edu/~kriz/cifar.html", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
|
|
url = _DATA_URLS[self.config.name.replace("+features", "")] |
|
archive = dl_manager.download(url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"files": dl_manager.iter_archive(archive), |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, files, split): |
|
"""This function returns the examples in the raw (text) form.""" |
|
|
|
if self.config.name.endswith("+features"): |
|
return self._generate_examples_with_features(files, split) |
|
else: |
|
return self._generate_examples_without_features(files, split) |
|
|
|
def _generate_examples_without_features(self, files, split): |
|
path: str |
|
file_obj: tarfile.ExFileObject |
|
root: str |
|
for path, file_obj in files: |
|
root = path[:-4] |
|
|
|
if path.endswith(".png"): |
|
image = file_obj.read() |
|
|
|
yield root, {"img_bytes": image} |
|
|
|
def _generate_examples_with_features(self, files, split): |
|
path: str |
|
file_obj: tarfile.ExFileObject |
|
outputs = {} |
|
root: Optional[str] = None |
|
for path, file_obj in files: |
|
root = path[:-4] |
|
|
|
if root not in outputs: |
|
outputs[root] = {} |
|
|
|
current_output = outputs[root] |
|
|
|
if path.endswith(".png"): |
|
image = file_obj.read() |
|
|
|
current_output["img_bytes"] = image |
|
else: |
|
df = pd.read_csv( |
|
BytesIO(file_obj.read()), |
|
header=None, |
|
names=["feature", "value", "num_categories"], |
|
) |
|
|
|
for index, row in df.iterrows(): |
|
current_output[row.feature] = row.value |
|
current_output[f"{row.feature}_num_categories"] = row.num_categories |
|
|
|
if "img_bytes" in current_output and len(current_output) > 1: |
|
yield root, current_output |
|
del outputs[root] |
|
root = None |
|
|
|
if len(outputs) > 0: |
|
raise ValueError( |
|
f"Unable to extract the following samples: {list(outputs)}" |
|
) |
|
|