File size: 4,368 Bytes
8552d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af403e5
 
 
8552d70
 
af403e5
8552d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af403e5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import gzip
import multiprocessing
import os
import shutil
import time
from argparse import Namespace
from collections import Counter
import numpy as np
from datasets import load_dataset, utils
import re
from huggingface_hub import Repository
from multiprocessing import Pool
from tqdm import tqdm

# Settings
config = {
    "dataset_name": "./data/github",
    "num_workers": 96,
    "line_max": 1000,
    "out_path": "./data/github-code",
    "repo_name": "github-code",
    "org": "lvwerra",
    "shard_size": 1000 << 20}

args = Namespace(**config)

PATTERN = re.compile(r'\s+')


def hash_func(text):
    return hashlib.md5(re.sub(PATTERN, '', text).encode("utf-8")).hexdigest()

def get_hash(example):
    """Get hash of content field."""
    return {"hash": hash_func(example["content"])}


def line_stats(example):
    """Calculates mean and max line length of file."""
    line_lengths = [len(line) for line in example["content"].splitlines()]
    return {"line_mean": np.mean(line_lengths), "line_max": max(line_lengths)}


def alpha_stats(example):
    """Calculates mean and max line length of file."""
    alpha_frac = np.mean([c.isalnum() for c in example["content"]])
    return {"alpha_frac": alpha_frac}


def check_uniques(example, uniques):
    """Check if current hash is still in set of unique hashes and remove if true."""
    if example["hash"] in uniques:
        uniques.remove(example["hash"])
        return True
    else:
        return False


def is_autogenerated(example, scan_width=5):
    """Check if file is autogenerated by looking for keywords in the first few lines of the file."""
    keywords = ["auto-generated", "autogenerated", "automatically generated"]
    lines = example["content"].splitlines()
    for _, line in zip(range(scan_width), lines):
        for keyword in keywords:
            if keyword in line.lower():
                return {"autogenerated": True}
    else:
        return {"autogenerated": False}


def preprocess(example):
    """Chain all preprocessing steps into one function to not fill cache."""
    results = dict()
    results.update(get_hash(example))
    results.update(line_stats(example))
    return results


def filter(example, uniques, args):
    """Filter dataset with heuristics."""
    if not check_uniques(example, uniques):
        return False
    elif example["line_max"] > args.line_max:
        return False
    else:
        return True
    
def save_shard(shard_tuple):
    """Save shard"""
    filename, shard = shard_tuple
    shard.to_parquet(filename)

# Load dataset
t_start = time.time()
ds = load_dataset(args.dataset_name, split="train", chunksize=40<<20)
print(f"Time to load dataset: {time.time()-t_start:.2f}")

# Run preprocessing
t_start = time.time()
ds = ds.map(preprocess, num_proc=args.num_workers)
print(f"Time to preprocess dataset: {time.time()-t_start:.2f}")
print(ds)

# Deduplicate hashes
uniques = set(ds.unique("hash"))
frac = len(uniques) / len(ds)
print(f"Fraction of duplicates: {1-frac:.2%}")

# Deduplicate data and apply heuristics
t_start = time.time()
ds = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args})
ds = ds.remove_columns(["line_mean", "line_max", "copies", "hash"])
print(f"Time to filter dataset: {time.time()-t_start:.2f}")
print(f"Size of filtered dataset: {len(ds)}")


# Save dataset in repo
repo = Repository(
        local_dir=args.out_path,
        clone_from=args.org + "/" + args.repo_name,
        repo_type="dataset",
        private=True,
        use_auth_token=True,
        git_user="lvwerra",
        git_email="[email protected]",
        )

os.mkdir(args.out_path + "/data")

if ds._indices is not None:
    dataset_nbytes = ds.data.nbytes * len(ds._indices) / len(ds.data)
else:
    dataset_nbytes = ds.data.nbytes

num_shards = int(dataset_nbytes / args.shard_size) + 1
print(f"Number of shards: {num_shards}")

t_start = time.time()
shards = (ds.shard(num_shards=num_shards, index=i, contiguous=True) for i in range(num_shards))
filenames = (f"{args.out_path}/data/train-{index:05d}-of-{num_shards:05d}.parquet" for index in range(num_shards))

with Pool(16) as p:
    list(tqdm(p.imap_unordered(save_shard, zip(filenames, shards), chunksize=4), total=num_shards))
print(f"Time to save dataset: {time.time()-t_start:.2f}")

# To push to hub run `git add/commit/push` inside dataset repo folder