|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Indonesian Newspapers 2018""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import glob |
|
import json |
|
import logging |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{id_newspapers_2018, |
|
author = {}, |
|
title = {Indonesian Newspapers 2018}, |
|
year = {2019}, |
|
url = {https://github.com/feryandi/Dataset-Artikel}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset contains around 500K articles (136M of words) from 7 Indonesian newspapers: Detik, Kompas, Tempo, |
|
CNN Indonesia, Sindo, Republika and Poskota. The articles are dated between 1st January 2018 and 20th August 2018 |
|
(with few exceptions dated earlier). The size of uncompressed 500K json files (newspapers-json.tgz) is around 2.2GB, |
|
and the cleaned uncompressed in a big text file (newspapers.txt.gz) is about 1GB. The original source in Google Drive |
|
contains also a dataset in html format which include raw data (pictures, css, javascript, ...) |
|
from the online news website |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/feryandi/Dataset-Artikel" |
|
|
|
_LICENSE = "Creative Commons Attribution-ShareAlike 4.0 International Public License" |
|
|
|
_URLs = ["http://cloud.uncool.ai/index.php/s/kF83dQHfGeS2LX2/download"] |
|
|
|
|
|
class IdNewspapers2018Config(datasets.BuilderConfig): |
|
"""BuilderConfig for IdNewspapers2018""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for IdNewspapers2018. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(IdNewspapers2018Config, self).__init__(**kwargs) |
|
|
|
|
|
class IdNewspapers2018(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
IdNewspapers2018Config( |
|
name="id_newspapers_2018", |
|
version=VERSION, |
|
description="IdNewspapers2018 dataset", |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"date": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"content": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
my_urls = _URLs[0] |
|
data_dir = dl_manager.download_and_extract(my_urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"article_dir": os.path.join(data_dir, "newspapers"), |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, article_dir, split): |
|
logging.info("⏳ Generating %s examples from = %s", split, article_dir) |
|
id = 0 |
|
for path in sorted(glob.glob(os.path.join(article_dir, "**/*.json"), recursive=True)): |
|
with open(path, encoding="utf-8") as f: |
|
data = json.load(f) |
|
yield id, { |
|
"id": str(id), |
|
"url": data["url"], |
|
"date": data["date"], |
|
"title": data["title"], |
|
"content": data["content"], |
|
} |
|
id += 1 |
|
|