system HF staff commited on
Commit
4cb7603
·
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"2011.main.DE": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2011.main.DE", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1747118, "num_examples": 120, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2011/Training_Data/Goldstandard/QA4MRE-2011-DE_GS.xml": {"num_bytes": 222289, "checksum": "9271e5f0aba731914fda18117b8255807d85b4cd7b0835ddca67f86ea9cb9381"}}, "download_size": 222289, "dataset_size": 1747118, "size_in_bytes": 1969407}, "2011.main.EN": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2011.main.EN", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1569676, "num_examples": 120, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2011/Training_Data/Goldstandard/QA4MRE-2011-EN_GS.xml": {"num_bytes": 202490, "checksum": "6d2524952a3a015f2a82df785b85b5578681e3602ec276b4e72c01f4ebc50034"}}, "download_size": 202490, "dataset_size": 1569676, "size_in_bytes": 1772166}, "2011.main.ES": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2011.main.ES", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1694460, "num_examples": 120, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2011/Training_Data/Goldstandard/QA4MRE-2011-ES_GS.xml": {"num_bytes": 217617, "checksum": "750b907bccf485cb9fa6e34c4f2fc2dbb4e87123ebf8ee123feaa5e178cdd956"}}, "download_size": 217617, "dataset_size": 1694460, "size_in_bytes": 1912077}, "2011.main.IT": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2011.main.IT", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1667188, "num_examples": 120, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2011/Training_Data/Goldstandard/QA4MRE-2011-IT_GS.xml": {"num_bytes": 214764, "checksum": "8dad14ffc087092d8de2351ca99cd219f492b860ec29c3c2b89ddbecc5f9f19a"}}, "download_size": 214764, "dataset_size": 1667188, "size_in_bytes": 1881952}, "2011.main.RO": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2011.main.RO", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1740419, "num_examples": 120, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2011/Training_Data/Goldstandard/QA4MRE-2011-RO_GS.xml": {"num_bytes": 221510, "checksum": "8e6abab8105c95dca29dd6db29e08fc361ee5538383b443a5f8e0abcf04a3483"}}, "download_size": 221510, "dataset_size": 1740419, "size_in_bytes": 1961929}, "2012.main.AR": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2012.main.AR", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2710656, "num_examples": 160, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2012/Main_Task/Training_Data/Goldstandard/Used_in_Evaluation/QA4MRE-2012-AR_GS.xml": {"num_bytes": 356178, "checksum": "b175b9284d6bdb9a5f64a2a4058994fecdc910e35daba07a854e7583eec50ddd"}}, "download_size": 356178, "dataset_size": 2710656, "size_in_bytes": 3066834}, "2012.main.BG": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2012.main.BG", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3454215, "num_examples": 160, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2012/Main_Task/Training_Data/Goldstandard/Used_in_Evaluation/QA4MRE-2012-BG_GS.xml": {"num_bytes": 445060, "checksum": "4c4d0548a0ad58136d2801934da206a3744a5fb0e16df820bc0010fcf71968ea"}}, "download_size": 445060, "dataset_size": 3454215, "size_in_bytes": 3899275}, "2012.main.DE": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2012.main.DE", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2087466, "num_examples": 160, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2012/Main_Task/Training_Data/Goldstandard/Used_in_Evaluation/QA4MRE-2012-DE_GS.xml": {"num_bytes": 281600, "checksum": "5a1384187712efc15c525ac3440dd73e3885bd8f4bfa0e2f5b482b84392c841c"}}, "download_size": 281600, "dataset_size": 2087466, "size_in_bytes": 2369066}, "2012.main.EN": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2012.main.EN", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1757586, "num_examples": 160, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2012/Main_Task/Training_Data/Goldstandard/Used_in_Evaluation/QA4MRE-2012-EN_GS.xml": {"num_bytes": 243467, "checksum": "f9edaf408f8ac93f89a643a0d0b19263a1bb5ce64f19b2af10df279a656dfb24"}}, "download_size": 243467, "dataset_size": 1757586, "size_in_bytes": 2001053}, "2012.main.ES": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2012.main.ES", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2057402, "num_examples": 160, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2012/Main_Task/Training_Data/Goldstandard/Used_in_Evaluation/QA4MRE-2012-ES_GS.xml": {"num_bytes": 278445, "checksum": "8f8d1074da323553f4b26597d6fb96da7896f5434558b2889a6dda1ff0eb12d5"}}, "download_size": 278445, "dataset_size": 2057402, "size_in_bytes": 2335847}, "2012.main.IT": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2012.main.IT", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2071710, "num_examples": 160, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2012/Main_Task/Training_Data/Goldstandard/Used_in_Evaluation/QA4MRE-2012-IT_GS.xml": {"num_bytes": 280051, "checksum": "6337c0db0001b70c9c463a0b8346599b4cb8a561a05ec094c3ab7e027130b195"}}, "download_size": 280051, "dataset_size": 2071710, "size_in_bytes": 2351761}, "2012.main.RO": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2012.main.RO", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2074930, "num_examples": 160, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2012/Main_Task/Training_Data/Goldstandard/Used_in_Evaluation/QA4MRE-2012-RO_GS.xml": {"num_bytes": 279541, "checksum": "3077e3b1b8a941a1b8c48943fe91bef904c35e041b7bdf944e166abbc76ed6c4"}}, "download_size": 279541, "dataset_size": 2074930, "size_in_bytes": 2354471}, "2012.alzheimers.EN": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2012.alzheimers.EN", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1637988, "num_examples": 40, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2012/Pilot_Tasks/Biomedical_About_Alzheimer/Training_Data/Goldstandard/QA4MRE-2012_BIOMEDICAL_GS.xml": {"num_bytes": 177345, "checksum": "fc7384029559f37c0b8ea33432a9d4a8dbe16056fc371f48a3efcebf87d187cb"}}, "download_size": 177345, "dataset_size": 1637988, "size_in_bytes": 1815333}, "2013.main.AR": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2013.main.AR", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4180979, "num_examples": 284, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2013/Main_Task/Training_Data/Goldstandard/QA4MRE-2013-AR_GS.xml": {"num_bytes": 378302, "checksum": "392f979fdc644a312551c8c8bf218aa28079478d34eb3ce35456734b46f3d039"}}, "download_size": 378302, "dataset_size": 4180979, "size_in_bytes": 4559281}, "2013.main.BG": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2013.main.BG", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5403246, "num_examples": 284, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2013/Main_Task/Training_Data/Goldstandard/QA4MRE-2013-BG_GS.xml": {"num_bytes": 463605, "checksum": "b8cd10a31299530aa47c0cd73b06d503c72e25e8b420f93b9c26660b64f4e3b4"}}, "download_size": 463605, "dataset_size": 5403246, "size_in_bytes": 5866851}, "2013.main.EN": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2013.main.EN", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2887866, "num_examples": 284, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2013/Main_Task/Training_Data/Goldstandard/QA4MRE-2013-EN_GS.xml": {"num_bytes": 274969, "checksum": "c60e5aa4ec77e0493ef0b11d46bd1d74d58a499a3a2f871b8cf3af9536f0f094"}}, "download_size": 274969, "dataset_size": 2887866, "size_in_bytes": 3162835}, "2013.main.ES": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2013.main.ES", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3449693, "num_examples": 284, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2013/Main_Task/Training_Data/Goldstandard/QA4MRE-2013-ES_GS.xml": {"num_bytes": 315166, "checksum": "60d92a4d8542a038ad1552afeee58860dc90c6ad5a2b2eda7f68f8788b5e704f"}}, "download_size": 315166, "dataset_size": 3449693, "size_in_bytes": 3764859}, "2013.main.RO": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2013.main.RO", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3363049, "num_examples": 284, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2013/Main_Task/Training_Data/Goldstandard/QA4MRE-2013-RO_GS.xml": {"num_bytes": 313510, "checksum": "d3e6ecb8563a9ebb07419e1e2c402daf7e3fd232d14eda54386c108855623f5e"}}, "download_size": 313510, "dataset_size": 3363049, "size_in_bytes": 3676559}, "2013.alzheimers.EN": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2013.alzheimers.EN", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2614812, "num_examples": 40, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2013/Biomedical_About_Alzheimer/Training_Data/Goldstandard/QA4MRE-2013_BIO_GS-RUN.xml": {"num_bytes": 274413, "checksum": "81b106eb14ec482a96ff646c6661bc34b2939392b858036458f80e7691082f72"}}, "download_size": 274413, "dataset_size": 2614812, "size_in_bytes": 2889225}, "2013.entrance_exam.EN": {"description": "\nQA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in \nquestion answering and reading comprehension. The dataset contains a supporting \npassage and a set of questions corresponding to the passage. Multiple options \nfor answers are provided for each question, of which only one is correct. The \ntraining and test datasets are available for the main track.\nAdditional gold standard documents are available for two pilot studies: one on \nalzheimers data, and the other on entrance exams data.\n", "citation": "\n@InProceedings{10.1007/978-3-642-40802-1_29,\nauthor=\"Pe{\\~{n}}as, Anselmo\nand Hovy, Eduard\nand Forner, Pamela\nand Rodrigo, {\\'A}lvaro\nand Sutcliffe, Richard\nand Morante, Roser\",\neditor=\"Forner, Pamela\nand M{\\\"u}ller, Henning\nand Paredes, Roberto\nand Rosso, Paolo\nand Stein, Benno\",\ntitle=\"QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation\",\nbooktitle=\"Information Access Evaluation. Multilinguality, Multimodality, and Visualization\",\nyear=\"2013\",\npublisher=\"Springer Berlin Heidelberg\",\naddress=\"Berlin, Heidelberg\",\npages=\"303--320\",\nabstract=\"This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.\",\nisbn=\"978-3-642-40802-1\"\n}\n", "homepage": "http://nlp.uned.es/clef-qa/repository/pastCampaigns.php", "license": "", "features": {"topic_id": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}, "test_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "document_str": {"dtype": "string", "id": null, "_type": "Value"}, "question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_str": {"dtype": "string", "id": null, "_type": "Value"}, "answer_options": {"feature": {"answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "correct_answer_id": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer_str": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qa4mre", "config_name": "2013.entrance_exam.EN", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 180827, "num_examples": 46, "dataset_name": "qa4mre"}}, "download_checksums": {"http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/2013/Entrance_Exams/Training_Data/Goldstandard/qa4mre-exam-test-withanswer.xml": {"num_bytes": 54598, "checksum": "fac91b06e6a8b0ac17e0c1b94b1296051020384b4fb1ba9a1d416da1a5ed9e0b"}}, "download_size": 54598, "dataset_size": 180827, "size_in_bytes": 235425}}
dummy/2011.main.DE/0.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b22bdc8ce12be3011dee5fa7ef53163b7b0af4468085ac2798519cf9a6307a7
3
+ size 117411
qa4mre.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """QA4MRE (CLEF 2011/2012/2013): a reading comprehension dataset."""
18
+
19
+ from __future__ import division, print_function
20
+
21
+ import logging
22
+ import os
23
+ import xml.etree.ElementTree as ET
24
+
25
+ import datasets
26
+
27
+
28
+ # pylint: disable=anomalous-backslash-in-string
29
+ _CITATION = r"""
30
+ @InProceedings{10.1007/978-3-642-40802-1_29,
31
+ author={Pe{\~{n}}as, Anselmoband Hovy, Eduardband Forner, Pamela and Rodrigo, {\'A}lvaro and Sutcliffe, Richard
32
+ and Morante, Roser},
33
+ editor={Forner, Pamela and M{\"u}ller, Henning and Paredes, Roberto and Rosso, Paolo
34
+ and Stein, Benno},
35
+ title={QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation},
36
+ booktitle={Information Access Evaluation. Multilinguality, Multimodality, and Visualization},
37
+ year={2013},
38
+ publisher={Springer Berlin Heidelberg},
39
+ address={Berlin, Heidelberg},
40
+ pages={303--320},
41
+ abstract={This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.},
42
+ isbn={978-3-642-40802-1}
43
+ }
44
+ """
45
+
46
+ _DESCRIPTION = """
47
+ QA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in
48
+ question answering and reading comprehension. The dataset contains a supporting
49
+ passage and a set of questions corresponding to the passage. Multiple options
50
+ for answers are provided for each question, of which only one is correct. The
51
+ training and test datasets are available for the main track.
52
+ Additional gold standard documents are available for two pilot studies: one on
53
+ alzheimers data, and the other on entrance exams data.
54
+ """
55
+
56
+ _BASE_URL = "http://datasets.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/"
57
+
58
+ PATHS = {
59
+ "2011": {
60
+ "_TRACKS": ("main"),
61
+ "_PATH_TMPL_MAIN_GS": "2011/Training_Data/Goldstandard/QA4MRE-2011-{}_GS.xml",
62
+ "_LANGUAGES_MAIN": ("DE", "EN", "ES", "IT", "RO"),
63
+ },
64
+ "2012": {
65
+ "_TRACKS": ("main", "alzheimers"),
66
+ "_PATH_TMPL_MAIN_GS": "2012/Main_Task/Training_Data/Goldstandard/Used_in_Evaluation/QA4MRE-2012-{}_GS.xml",
67
+ "_LANGUAGES_MAIN": ("AR", "BG", "DE", "EN", "ES", "IT", "RO"),
68
+ "_PATH_ALZHEIMER": "2012/Pilot_Tasks/Biomedical_About_Alzheimer/Training_Data/Goldstandard/QA4MRE-2012_BIOMEDICAL_GS.xml",
69
+ },
70
+ "2013": {
71
+ "_TRACKS": ("main", "alzheimers", "entrance_exam"),
72
+ "_PATH_TMPL_MAIN_GS": "2013/Main_Task/Training_Data/Goldstandard/QA4MRE-2013-{}_GS.xml",
73
+ "_LANGUAGES_MAIN": ("AR", "BG", "EN", "ES", "RO"),
74
+ "_PATH_ALZHEIMER": "2013/Biomedical_About_Alzheimer/Training_Data/Goldstandard/QA4MRE-2013_BIO_GS-RUN.xml",
75
+ "_PATH_ENTRANCE_EXAM": "2013/Entrance_Exams/Training_Data/Goldstandard/qa4mre-exam-test-withanswer.xml",
76
+ },
77
+ }
78
+
79
+
80
+ def _get_question(topic_id, topic_name, test_id, document_id, document_str, question):
81
+ """Gets instance ID and features for every question.
82
+
83
+ Args:
84
+ topic_id: string
85
+ topic_name: string
86
+ test_id: string
87
+ document_id: string
88
+ document_str: string
89
+ question: XML element for question
90
+
91
+ Returns:
92
+ id_: string. Unique ID for instance.
93
+ feats: dict of instance features
94
+ """
95
+
96
+ question_id = question.attrib["q_id"]
97
+ for q_text in question.iter("q_str"):
98
+ question_str = q_text.text
99
+ possible_answers = list()
100
+ for answer in question.iter("answer"):
101
+ answer_id = answer.attrib["a_id"]
102
+ answer_str = answer.text
103
+ possible_answers.append({"answer_id": answer_id, "answer_str": answer_str})
104
+ if "correct" in answer.attrib:
105
+ correct_answer_id = answer_id
106
+ correct_answer_str = answer_str
107
+
108
+ id_ = "_".join([topic_id, topic_name, test_id, question_id])
109
+ logging.info("ID: %s", id_)
110
+
111
+ feats = {
112
+ "topic_id": topic_id,
113
+ "topic_name": topic_name,
114
+ "test_id": test_id,
115
+ "document_id": document_id,
116
+ "document_str": document_str,
117
+ "question_id": question_id,
118
+ "question_str": question_str,
119
+ "answer_options": possible_answers,
120
+ "correct_answer_id": correct_answer_id,
121
+ "correct_answer_str": correct_answer_str,
122
+ }
123
+
124
+ return id_, feats
125
+
126
+
127
+ class Qa4mreConfig(datasets.BuilderConfig):
128
+ """BuilderConfig for Qa4mre."""
129
+
130
+ def __init__(self, year, track="main", language="EN", **kwargs):
131
+ """BuilderConfig for Qa4Mre.
132
+
133
+ Args:
134
+ year: string, year of dataset
135
+ track: string, the task track from PATHS[year]['_TRACKS'].
136
+ language: string, Acronym for language in the main task.
137
+ **kwargs: keyword arguments forwarded to super.
138
+ """
139
+ if track.lower() not in PATHS[year]["_TRACKS"]:
140
+ raise ValueError("Incorrect track. Track should be one of the following: ", PATHS[year]["_TRACKS"])
141
+
142
+ if track.lower() != "main" and language.upper() != "EN":
143
+ logging.warn("Only English documents available for pilot " "tracks. Setting English by default.")
144
+ language = "EN"
145
+
146
+ if track.lower() == "main" and language.upper() not in PATHS[year]["_LANGUAGES_MAIN"]:
147
+ raise ValueError(
148
+ "Incorrect language for the main track. Correct options: ", PATHS[year]["_LANGUAGES_MAIN"]
149
+ )
150
+
151
+ self.year = year
152
+ self.track = track.lower()
153
+ self.lang = language.upper()
154
+
155
+ name = self.year + "." + self.track + "." + self.lang
156
+
157
+ description = _DESCRIPTION
158
+ description += ("This configuration includes the {} track for {} language " "in {} year.").format(
159
+ self.track, self.lang, self.year
160
+ )
161
+
162
+ super(Qa4mreConfig, self).__init__(
163
+ name=name, description=description, version=datasets.Version("0.1.0"), **kwargs
164
+ )
165
+
166
+
167
+ class Qa4mre(datasets.GeneratorBasedBuilder):
168
+ """QA4MRE dataset from CLEF shared tasks 2011, 2012, 2013."""
169
+
170
+ BUILDER_CONFIGS = [
171
+ Qa4mreConfig(year="2011", track="main", language="DE"), # 2011 Main track German (2011.main.DE)
172
+ Qa4mreConfig(year="2011", track="main", language="EN"), # 2011 Main track English (2011.main.EN)
173
+ Qa4mreConfig(year="2011", track="main", language="ES"), # 2011 Main track Spanish (2011.main.ES)
174
+ Qa4mreConfig(year="2011", track="main", language="IT"), # 2011 Main track Italian (2011.main.IT)
175
+ Qa4mreConfig(year="2011", track="main", language="RO"), # 2011 Main track Romanian (2011.main.RO)
176
+ Qa4mreConfig(year="2012", track="main", language="AR"), # 2012 Main track Arabic (2012.main.AR)
177
+ Qa4mreConfig(year="2012", track="main", language="BG"), # 2012 Main track Bulgarian (2012.main.BG)
178
+ Qa4mreConfig(year="2012", track="main", language="DE"), # 2012 Main track German (2012.main.DE)
179
+ Qa4mreConfig(year="2012", track="main", language="EN"), # 2012 Main track English (2012.main.EN)
180
+ Qa4mreConfig(year="2012", track="main", language="ES"), # 2012 Main track Spanish (2012.main.ES)
181
+ Qa4mreConfig(year="2012", track="main", language="IT"), # 2012 Main track Italian (2012.main.IT)
182
+ Qa4mreConfig(year="2012", track="main", language="RO"), # 2012 Main track Romanian (2012.main.RO)
183
+ Qa4mreConfig(year="2012", track="alzheimers", language="EN"), # (2012.alzheimers.EN)
184
+ Qa4mreConfig(year="2013", track="main", language="AR"), # 2013 Main track Arabic (2013.main.AR)
185
+ Qa4mreConfig(year="2013", track="main", language="BG"), # 2013 Main track Bulgarian (2013.main.BG)
186
+ Qa4mreConfig(year="2013", track="main", language="EN"), # 2013 Main track English (2013.main.EN)
187
+ Qa4mreConfig(year="2013", track="main", language="ES"), # 2013 Main track Spanish (2013.main.ES)
188
+ Qa4mreConfig(year="2013", track="main", language="RO"), # 2013 Main track Romanian (2013.main.RO)
189
+ Qa4mreConfig(year="2013", track="alzheimers", language="EN"), # (2013.alzheimers.EN)
190
+ Qa4mreConfig(year="2013", track="entrance_exam", language="EN"), # (2013.entrance_exam.EN)
191
+ ]
192
+
193
+ def _info(self):
194
+ return datasets.DatasetInfo(
195
+ # This is the description that will appear on the datasets page.
196
+ description=_DESCRIPTION,
197
+ # datasets.features.FeatureConnectors
198
+ features=datasets.Features(
199
+ {
200
+ "topic_id": datasets.Value("string"),
201
+ "topic_name": datasets.Value("string"),
202
+ "test_id": datasets.Value("string"),
203
+ "document_id": datasets.Value("string"),
204
+ "document_str": datasets.Value("string"),
205
+ "question_id": datasets.Value("string"),
206
+ "question_str": datasets.Value("string"),
207
+ "answer_options": datasets.features.Sequence(
208
+ {"answer_id": datasets.Value("string"), "answer_str": datasets.Value("string")}
209
+ ),
210
+ "correct_answer_id": datasets.Value("string"),
211
+ "correct_answer_str": datasets.Value("string"),
212
+ }
213
+ ),
214
+ # No default supervised keys because both passage and question are used
215
+ # to determine the correct answer.
216
+ supervised_keys=None,
217
+ homepage="http://datasets.uned.es/clef-qa/repository/pastCampaigns.php",
218
+ citation=_CITATION,
219
+ )
220
+
221
+ def _split_generators(self, dl_manager):
222
+ """Returns SplitGenerators."""
223
+ cfg = self.config
224
+ download_urls = dict()
225
+
226
+ if cfg.track == "main":
227
+ download_urls["{}.main.{}".format(cfg.year, cfg.lang)] = os.path.join(
228
+ _BASE_URL, PATHS[cfg.year]["_PATH_TMPL_MAIN_GS"].format(cfg.lang)
229
+ )
230
+
231
+ if cfg.year in ["2012", "2013"] and cfg.track == "alzheimers":
232
+ download_urls["{}.alzheimers.EN".format(cfg.year)] = os.path.join(
233
+ _BASE_URL, PATHS[cfg.year]["_PATH_ALZHEIMER"]
234
+ )
235
+
236
+ if cfg.year == "2013" and cfg.track == "entrance_exam":
237
+ download_urls["2013.entrance_exam.EN"] = os.path.join(_BASE_URL, PATHS[cfg.year]["_PATH_ENTRANCE_EXAM"])
238
+
239
+ downloaded_files = dl_manager.download_and_extract(download_urls)
240
+
241
+ return [
242
+ datasets.SplitGenerator(
243
+ name=datasets.Split.TRAIN,
244
+ gen_kwargs={"filepath": downloaded_files["{}.{}.{}".format(cfg.year, cfg.track, cfg.lang)]},
245
+ )
246
+ ]
247
+
248
+ def _generate_examples(self, filepath):
249
+ """Yields examples."""
250
+ with open(filepath, "rb") as f:
251
+ tree = ET.parse(f)
252
+ root = tree.getroot() # test-set
253
+ for topic in root:
254
+ topic_id = topic.attrib["t_id"]
255
+ topic_name = topic.attrib["t_name"]
256
+ for test in topic:
257
+ test_id = test.attrib["r_id"]
258
+ for document in test.iter("doc"):
259
+ document_id = document.attrib["d_id"]
260
+ document_str = document.text
261
+ for question in test.iter("q"):
262
+ yield _get_question(topic_id, topic_name, test_id, document_id, document_str, question)