Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
scielo / scielo.py
system's picture
system HF staff
Update files from the datasets library (from 1.16.0)
c5a2439
raw
history blame
4.86 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Parallel corpus of full-text articles in Portuguese, English and Spanish from SciELO"""
import datasets
_CITATION = """\
@inproceedings{soares2018large,
title={A Large Parallel Corpus of Full-Text Scientific Articles},
author={Soares, Felipe and Moreira, Viviane and Becker, Karin},
booktitle={Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018)},
year={2018}
}
"""
_DESCRIPTION = """\
A parallel corpus of full-text scientific articles collected from Scielo database in the following languages: \
English, Portuguese and Spanish. The corpus is sentence aligned for all language pairs, \
as well as trilingual aligned for a small subset of sentences. Alignment was carried out using the Hunalign algorithm.
"""
_HOMEPAGE = "https://sites.google.com/view/felipe-soares/datasets#h.p_92uSCyAjWSRB"
_LANGUAGES = ["en-es", "en-pt", "en-pt-es"]
_URLS = {
"en-es": "https://ndownloader.figstatic.com/files/14019287",
"en-pt": "https://ndownloader.figstatic.com/files/14019308",
"en-pt-es": "https://ndownloader.figstatic.com/files/14019293",
}
class Scielo(datasets.GeneratorBasedBuilder):
"""Parallel corpus of full-text articles in Portuguese, English and Spanish from SciELO"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="en-es", version=datasets.Version("1.0.0"), description="English-Spanish"),
datasets.BuilderConfig(name="en-pt", version=datasets.Version("1.0.0"), description="English-Portuguese"),
datasets.BuilderConfig(
name="en-pt-es", version=datasets.Version("1.0.0"), description="English-Portuguese-Spanish"
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{"translation": datasets.features.Translation(languages=tuple(self.config.name.split("-")))}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
archive = dl_manager.download(_URLS[self.config.name])
lang_pair = self.config.name.split("-")
fname = self.config.name.replace("-", "_")
if self.config.name == "en-pt-es":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"source_file": f"{fname}.en",
"target_file": f"{fname}.pt",
"target_file_2": f"{fname}.es",
"files": dl_manager.iter_archive(archive),
},
),
]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"source_file": f"{fname}.{lang_pair[0]}",
"target_file": f"{fname}.{lang_pair[1]}",
"files": dl_manager.iter_archive(archive),
},
),
]
def _generate_examples(self, source_file, target_file, files, target_file_2=None):
for path, f in files:
if path == source_file:
source_sentences = f.read().decode("utf-8").split("\n")
elif path == target_file:
target_sentences = f.read().decode("utf-8").split("\n")
elif self.config.name == "en-pt-es" and path == target_file_2:
target_sentences_2 = f.read().decode("utf-8").split("\n")
if self.config.name == "en-pt-es":
source, target, target_2 = tuple(self.config.name.split("-"))
for idx, (l1, l2, l3) in enumerate(zip(source_sentences, target_sentences, target_sentences_2)):
result = {"translation": {source: l1, target: l2, target_2: l3}}
yield idx, result
else:
source, target = tuple(self.config.name.split("-"))
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)):
result = {"translation": {source: l1, target: l2}}
yield idx, result