sufficient_facts / bg-fake-news.py
pepa's picture
Upload bg-fake-news.py
3745598
raw
history blame
3.1 kB
import json
import textwrap
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = "Fake news detection dataset."
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
_FEATURES = datasets.Features({
"title": datasets.Value("string"),
"url": datasets.Value("string"),
"date_published": datasets.Value("string"),
"content": datasets.Value("string"),
"fake_news": datasets.features.ClassLabel(names=["fake", "real"])
})
class FakeNewsConfig(datasets.BuilderConfig):
"""BuilderConfig for FakeNews"""
def __init__(self, data_url, citation, url, text_features, **kwargs):
"""
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
label_column:
label_classes
**kwargs: keyword arguments forwarded to super.
"""
super(FakeNewsConfig, self).__init__(version=datasets.Version("0.1.0", ""), **kwargs)
self.text_features = text_features
self.data_url = data_url
self.citation = citation
self.url = url
class FakeNewsConfig(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.1.0")
DEFAULT_CONFIG_NAME = "default"
BUILDER_CONFIGS = [FakeNewsConfig(
name=DEFAULT_CONFIG_NAME,
description=_DESCRIPTION,
citation=textwrap.dedent(_CITATION),
text_features=_FEATURES,
data_url="https://gitlab.com/datasciencesociety/case_fake_news/-/blob/master/data/main_data_fake_news.csv",
url="https://gitlab.com/datasciencesociety/case_fake_news/-/blob/master/data/main_data_fake_news.csv",
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=_FEATURES,
supervised_keys=None,
citation=_CITATION,
)
def _split_generators(self, dl_manager=None, config=None):
data_dir = dl_manager.download(self.config.data_url)
split_filenames = {
datasets.Split.TRAIN: "train.jsonl",
datasets.Split.VALIDATION: "dev.jsonl",
datasets.Split.TEST: "test.jsonl",
}
return [
datasets.SplitGenerator(
name=split,
gen_kwargs={
"filepath": dl_manager.iter_archive(data_dir),
"filename": split_filenames[split],
},
)
for split in split_filenames
]
def _generate_examples(self, filepath=None, filename=None):
idx = 0
for path, file in filepath:
if path.endswith(filename):
lines = (line.decode("utf-8") for line in file)
for line in lines:
idx += 1
example = json.loads(line)
yield idx, example