ggbetz's picture
Upload results for model NousResearch/Nous-Hermes-llama-2-7b
1905939 verified
raw
history blame
10.7 kB
{
"results": {
"natus-ut-9938_logiqa2_cot": {
"acc,none": 0.30470737913486007,
"acc_stderr,none": 0.011612806870393316,
"alias": "natus-ut-9938_logiqa2_cot"
},
"natus-ut-9938_logiqa_cot": {
"acc,none": 0.28434504792332266,
"acc_stderr,none": 0.01804407677415737,
"alias": "natus-ut-9938_logiqa_cot"
},
"natus-ut-9938_lsat-ar_cot": {
"acc,none": 0.25217391304347825,
"acc_stderr,none": 0.028696745294493366,
"alias": "natus-ut-9938_lsat-ar_cot"
},
"natus-ut-9938_lsat-lr_cot": {
"acc,none": 0.23137254901960785,
"acc_stderr,none": 0.018691965462419524,
"alias": "natus-ut-9938_lsat-lr_cot"
},
"natus-ut-9938_lsat-rc_cot": {
"acc,none": 0.26022304832713755,
"acc_stderr,none": 0.02680130130545777,
"alias": "natus-ut-9938_lsat-rc_cot"
}
},
"configs": {
"natus-ut-9938_logiqa2_cot": {
"task": "natus-ut-9938_logiqa2_cot",
"group": "logikon-bench",
"dataset_path": "cot-leaderboard/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "natus-ut-9938-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"natus-ut-9938_logiqa_cot": {
"task": "natus-ut-9938_logiqa_cot",
"group": "logikon-bench",
"dataset_path": "cot-leaderboard/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "natus-ut-9938-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"natus-ut-9938_lsat-ar_cot": {
"task": "natus-ut-9938_lsat-ar_cot",
"group": "logikon-bench",
"dataset_path": "cot-leaderboard/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "natus-ut-9938-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"natus-ut-9938_lsat-lr_cot": {
"task": "natus-ut-9938_lsat-lr_cot",
"group": "logikon-bench",
"dataset_path": "cot-leaderboard/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "natus-ut-9938-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"natus-ut-9938_lsat-rc_cot": {
"task": "natus-ut-9938_lsat-rc_cot",
"group": "logikon-bench",
"dataset_path": "cot-leaderboard/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "natus-ut-9938-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
}
},
"versions": {
"natus-ut-9938_logiqa2_cot": 0.0,
"natus-ut-9938_logiqa_cot": 0.0,
"natus-ut-9938_lsat-ar_cot": 0.0,
"natus-ut-9938_lsat-lr_cot": 0.0,
"natus-ut-9938_lsat-rc_cot": 0.0
},
"n-shot": {
"natus-ut-9938_logiqa2_cot": 0,
"natus-ut-9938_logiqa_cot": 0,
"natus-ut-9938_lsat-ar_cot": 0,
"natus-ut-9938_lsat-lr_cot": 0,
"natus-ut-9938_lsat-rc_cot": 0
},
"config": {
"model": "vllm",
"model_args": "pretrained=NousResearch/Nous-Hermes-llama-2-7b,revision=main,dtype=bfloat16,tensor_parallel_size=1,gpu_memory_utilization=0.8,trust_remote_code=true,max_length=2048",
"batch_size": "auto",
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null
},
"git_hash": "a550a44"
}