File size: 6,333 Bytes
a47247b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651bb9a
 
a47247b
651bb9a
 
a47247b
651bb9a
 
 
 
a47247b
b3bab36
a47247b
 
651bb9a
a47247b
651bb9a
a47247b
651bb9a
b3bab36
 
 
 
 
 
 
 
362ba1f
 
 
 
 
 
 
 
 
 
 
344af4b
 
 
 
 
 
 
 
 
 
 
a47247b
362ba1f
1f19853
362ba1f
 
1f19853
362ba1f
 
 
 
 
 
d41626c
362ba1f
1f19853
 
 
362ba1f
d41626c
362ba1f
 
d41626c
 
a8d814e
d41626c
0024d43
d41626c
 
362ba1f
a8d814e
d41626c
 
 
 
362ba1f
 
 
 
d41626c
362ba1f
 
 
 
 
d41626c
362ba1f
 
 
 
 
d41626c
362ba1f
 
 
 
 
d41626c
 
 
 
 
 
 
 
 
 
 
 
362ba1f
 
 
 
 
 
 
d41626c
362ba1f
 
 
 
d41626c
362ba1f
 
 
 
 
d41626c
362ba1f
 
 
 
 
d41626c
362ba1f
1f19853
362ba1f
 
 
 
 
 
 
 
 
d41626c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
dataset_info:
  features:
  - name: id
    dtype: string
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: answer
    dtype: string
  - name: dataset
    dtype: string
  - name: translated
    dtype: bool
  - name: input
    dtype: string
  - name: output
    dtype: string
  - name: conversations
    list:
    - name: content
      dtype: string
    - name: role
      dtype: string
  splits:
  - name: train
    num_bytes: 864378584
    num_examples: 923646
  - name: validation
    num_bytes: 25124637
    num_examples: 23541
  - name: test
    num_bytes: 23873116
    num_examples: 23023
  download_size: 285523301
  dataset_size: 913376337
configs:
- config_name: en
  data_files:
  - split: train
    path: en/train-*
  - split: validation
    path: en/validation-*
  - split: test
    path: en/test-*
- config_name: cs
  data_files:
  - split: train
    path: cs/train-*
  - split: validation
    path: cs/validation-*
  - split: test
    path: cs/test-*
license: cc-by-nc-sa-4.0
task_categories:
- text-generation
- text-classification
language:
- cs
- en
tags:
- NLI
size_categories:
- 1M<n<10M
source_datasets:
- ctu-aic/enfever_nli
- facebook/anli
- stanfordnlp/snli
- chenxwh/AVeriTeC
- ctu-aic/anli_cs
- ctu-aic/snli_cs
- ctu-aic/csfever_nli
- ctu-aic/ctkfacts_nli
multilinguality:
- multilingual
---

# Dataset Card for Natural Language Inference Instruction Tuning Collection

<!-- Provide a quick summary of the dataset. -->
This dataset is a collection of various NLI datasets in Czech and English, transformed into an instruction tuning format based on the FLAN approach.

## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->
This dataset is a collection of English and Czech NLI datasets. Its primary purpose is instruction tuning (supervised fine tuning) of decoder LLMs. The used datasets were converted using a FLAN-like templates.

- **Curated by:** Artificial Intelligence Center, FEE, CTU in Prague
- **Language(s) (NLP):** Czech (cs, ces), English (en)
- **License:** [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed)

### Dataset Sources

<!-- Provide the basic links for the dataset. -->
The dataset consists of the following datasets:

**English** 🇺🇸 🇬🇧
- [FEVER](https://huggingface.co/datasets/ctu-aic/enfever_nli) - FEVER transformed for NLI
- [AVeriTeC](https://huggingface.co/chenxwh/AVeriTeC) - train and development gold splits with concatenated question-answer pairs as the evidence
- [SNLI](https://huggingface.co/datasets/stanfordnlp/snli)
- [ANLI](https://huggingface.co/datasets/facebook/anli)

**Czech** 🇨🇿
- [CsFEVER-NLI](https://huggingface.co/datasets/ctu-aic/csfever_nli) - FEVER translated to Czech using Deepl translator
- [CtkFACTS-NLI](https://huggingface.co/datasets/ctu-aic/ctkfacts_nli) - Original Czech NLI dataset
- [SNLI_CS](https://huggingface.co/datasets/ctu-aic/snli_cs) - SNLI translated to Czech using Google translator
- [ANLI_CS](https://huggingface.co/datasets/ctu-aic/anli_cs) - ANLI translated to Czech

## Uses

<!-- Address questions around how the dataset is intended to be used. -->
The dataset is intended for simillar usage as the original FLAN dataset. Its main purpose is instruction tuning (supervised fine tuning) of decoder LLMs on NLI task.

### Direct Use

<!-- This section describes suitable use cases for the dataset. -->

For direct usage there is column conversations, which can be directly used for training using Transformers and Transformers-related libraries.

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->

This collection is not directly intended for training decoder models, however, it can be transformed for this purposes as well.

## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

The datasets consists of two language subsets - cs (Czech), en (English)
Each of the subsets contains following columns:
- **id** (str) - identifier, unique only in the dataset of origin
- **premise** (str) - premise (NLI), evidence (fact-checking)
- **hypothesis** (str) - hypothesis (NLI), claim (fact-checking)
- **answer** (str) - correct answer to the NLI/fact-checking question
- **dataset** (str) - the original datasets, which is source of the data
- **translated** (bool) - true if the data point is translated from other language
- **input** (str) - input created using FLAN-like template using *premise*, *hypothesis* and *answer*
- **output** (str) - expected output created according to the randomly chosed FLAN-like template.
- **conversation** (List[Dict[str, str]]) - Hugging Face Transformers-compatible conversation style format, composed from *input* and *output*, which can be directly used for instruction tuning (LLM instruction template can be directly applied)


## Dataset Creation

### Curation Rationale

<!-- Motivation for the creation of this dataset. -->

The creation was motivated by the nonexistence of any simillar collection with FLAN-like instructions for the Czech language.

### Source Data

<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
For the original data sources please refer to the original datasets.

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

This collection contains the biases, risks and limitations of the underlying datasets. Moreover, other limitation is that the variety of prompt templates is limited to 10 per dataset.

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users should be made aware of the risks, biases and limitations of the dataset.

## Citation [TBD]

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

## Dataset Card Contact

If there is any problem or question, please use the dataset discussion here on Huggingface.