|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition""" |
|
|
|
import os |
|
|
|
import json |
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
|
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
|
|
""" |
|
|
|
_URL = "https://huggingface.co/datasets/cynthiachan/feedref2022/resolve/main/FeedRef2022.zip" |
|
_TRAINING_FILE = "train.json" |
|
_DEV_FILE = "valid.json" |
|
_TEST_FILE = "test.json" |
|
|
|
|
|
class FeedRef2022Config(datasets.BuilderConfig): |
|
"""BuilderConfig for FeedRef2022""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for FeedRef2022. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(FeedRef2022Config, self).__init__(**kwargs) |
|
|
|
|
|
class FeedRef2022(datasets.GeneratorBasedBuilder): |
|
"""FeedRef2022 dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
FeedRef2022Config(name="FeedRef2022", version=datasets.Version("1.0.0"), description="FeedRef2022 dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-attackID", |
|
"I-attackID", |
|
"B-bitcoinAddr", |
|
"I-bitcoinAddr", |
|
"B-cve", |
|
"I-cve", |
|
"B-defenderThreat", |
|
"I-defenderThreat", |
|
"B-domain", |
|
"I-domain", |
|
"B-email", |
|
"I-email", |
|
"B-md5", |
|
"I-md5", |
|
"B-sha1", |
|
"I-sha1", |
|
"B-sha256", |
|
"I-sha256", |
|
"B-filepath", |
|
"I-filepath", |
|
"B-hostname", |
|
"I-hostname", |
|
"B-ipv4", |
|
"I-ipv4", |
|
"B-ipv6", |
|
"I-ipv6", |
|
"B-fingerprint", |
|
"I-fingerprint", |
|
"B-uri", |
|
"I-uri", |
|
"B-url", |
|
"I-url", |
|
"B-yara", |
|
"I-yara" |
|
] |
|
) |
|
), |
|
} |
|
), |
|
|
|
|
|
|
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
downloaded_file = dl_manager.download_and_extract(_URL) |
|
data_files = { |
|
"train": os.path.join(downloaded_file, _TRAINING_FILE), |
|
"dev": os.path.join(downloaded_file, _DEV_FILE), |
|
"test": os.path.join(downloaded_file, _TEST_FILE), |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
id = 0 |
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.load(f) |
|
for sentence in data["data"]: |
|
yield id, { |
|
"id": id, |
|
"tokens": sentence["tokens"], |
|
"ner_tags": sentence["ner_tags"] |
|
} |
|
id+=1 |
|
|