File size: 62,901 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 |
# File: candle-main/candle-pyo3/_additional_typing/__init__.py from typing import Union, Sequence class Tensor: def __add__(self, rhs: Union['Tensor', 'Scalar']) -> 'Tensor': pass def __radd__(self, rhs: Union['Tensor', 'Scalar']) -> 'Tensor': pass def __sub__(self, rhs: Union['Tensor', 'Scalar']) -> 'Tensor': pass def __truediv__(self, rhs: Union['Tensor', 'Scalar']) -> 'Tensor': pass def __mul__(self, rhs: Union['Tensor', 'Scalar']) -> 'Tensor': pass def __rmul__(self, rhs: Union['Tensor', 'Scalar']) -> 'Tensor': pass def __richcmp__(self, rhs: Union['Tensor', 'Scalar'], op) -> 'Tensor': pass def __getitem__(self, index: Union['Index', 'Tensor', Sequence['Index']]) -> 'Tensor': pass def __eq__(self, rhs: Union['Tensor', 'Scalar']) -> 'Tensor': pass def __ne__(self, rhs: Union['Tensor', 'Scalar']) -> 'Tensor': pass def __lt__(self, rhs: Union['Tensor', 'Scalar']) -> 'Tensor': pass def __le__(self, rhs: Union['Tensor', 'Scalar']) -> 'Tensor': pass def __gt__(self, rhs: Union['Tensor', 'Scalar']) -> 'Tensor': pass def __ge__(self, rhs: Union['Tensor', 'Scalar']) -> 'Tensor': pass # File: candle-main/candle-pyo3/e5.py from candle.utils import load_safetensors, save_gguf, load_gguf from candle.models.bert import BertModel, Config import json from candle import Tensor from tqdm import tqdm from dataclasses import fields import os import time from huggingface_hub import hf_hub_download from transformers import BertTokenizer, AutoModel import torch if __name__ == '__main__': model_name = 'intfloat/e5-small-v2' model_file = hf_hub_download(repo_id=model_name, filename='model.safetensors') config_file = hf_hub_download(repo_id=model_name, filename='config.json') tensors = load_safetensors(model_file) config = Config() with open(config_file, 'r') as f: raw_config = json.load(f) for field in fields(config): if field.name in raw_config: setattr(config, field.name, raw_config[field.name]) model = BertModel(config) model.load_state_dict(tensors) hf_model = AutoModel.from_pretrained(model_name) tokenizer = BertTokenizer.from_pretrained(model_name) sentences = ['The cat sits outside', 'A man is playing guitar', 'I love pasta', 'The new movie is awesome', 'The cat plays in the garden', 'A woman watches TV', 'The new movie is so great', 'Do you like pizza?'] def average_pool(last_hidden_states: torch.Tensor, attention_mask: torch.Tensor): last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] tokenized = tokenizer(sentences, padding=True) tokens = Tensor(tokenized['input_ids']) token_type_ids = Tensor(tokenized['token_type_ids']) attention_mask = Tensor(tokenized['attention_mask']) (encoder_out, _) = model.forward(tokens, token_type_ids, attention_mask=attention_mask) hf_tokenized = tokenizer(sentences, padding=True, return_tensors='pt') hf_result = hf_model(**hf_tokenized)['last_hidden_state'] hf_pooled = average_pool(hf_result, hf_tokenized['attention_mask']) candle_pooled = average_pool(torch.tensor(encoder_out.values()), hf_tokenized['attention_mask']) loss = torch.nn.L1Loss() error = loss(hf_pooled, candle_pooled).mean().item() print(f'Mean error between torch-reference and candle: {error}') quantized_tensors = {} for (name, tensor) in tqdm(tensors.items(), desc='Quantizing tensors to 5-Bit'): if name.endswith('weight') and ('attention' in name or 'intermediate' in name or 'output' in name): if tensor.shape[-1] % 256 == 0: new_tensor = tensor.quantize('q4k') else: new_tensor = tensor.quantize('q5_0') quantized_tensors[name] = new_tensor else: quantized_tensors[name] = tensor.quantize('q8_0') print(f'Saving quantized tensors') config_to_save = {k: v for (k, v) in config.__dict__.items() if v is not None} quantized_model_file = 'e5_small.gguf' save_gguf(quantized_model_file, quantized_tensors, config_to_save) file_size_mb = os.path.getsize(model_file) / 1024 / 1024 file_size_mb_compressed = os.path.getsize(quantized_model_file) / 1024 / 1024 print(f'Compressed model from {file_size_mb:.2f} MB to {file_size_mb_compressed:.2f} MB') (tensors, raw_config) = load_gguf(quantized_model_file) config = Config() for field in fields(config): if field.name in raw_config: setattr(config, field.name, raw_config[field.name]) model = BertModel(config) model.load_state_dict(tensors, strict=False) (encoder_out_2, pooled_output_2) = model.forward(tokens, token_type_ids) (encoder_out_2, pooled_output_2) = (encoder_out_2.to_device('cpu'), pooled_output_2.to_device('cpu')) candle_pooled_2 = average_pool(torch.tensor(encoder_out_2.values()), hf_tokenized['attention_mask']) error = loss(hf_pooled, candle_pooled_2).mean().item() print(f'Mean error between torch-reference and quantized-candle: {error}') # File: candle-main/candle-pyo3/py_src/candle/__init__.py import logging try: from .candle import * except ImportError as e: logging.warning('DLLs were not bundled with this package. Trying to locate them...') import os import platform def locate_cuda_dlls(): logging.warning('Locating CUDA DLLs...') cuda_path = os.environ.get('CUDA_PATH', None) if cuda_path: logging.warning(f'Found CUDA_PATH environment variable: {cuda_path}') if platform.system() == 'Windows': cuda_path = os.path.join(cuda_path, 'bin') else: cuda_path = os.path.join(cuda_path, 'lib64') logging.warning(f'Adding {cuda_path} to DLL search path...') os.add_dll_directory(cuda_path) else: logging.warning('CUDA_PATH environment variable not found!') def locate_mkl_dlls(): oneapi_root = os.environ.get('ONEAPI_ROOT', None) if oneapi_root: if platform.system() == 'Windows': mkl_path = os.path.join(oneapi_root, 'compiler', 'latest', 'windows', 'redist', 'intel64_win', 'compiler') else: mkl_path = os.path.join(oneapi_root, 'mkl', 'latest', 'lib', 'intel64') logging.warning(f'Adding {mkl_path} to DLL search path...') os.add_dll_directory(mkl_path) else: logging.warning('ONEAPI_ROOT environment variable not found!') locate_cuda_dlls() locate_mkl_dlls() try: from .candle import * except ImportError as inner_e: raise ImportError('Could not locate DLLs. Please check the documentation for more information.') __doc__ = candle.__doc__ if hasattr(candle, '__all__'): __all__ = candle.__all__ # File: candle-main/candle-pyo3/py_src/candle/models/bert.py from dataclasses import dataclass from typing import Optional from candle.nn import Module, Embedding, LayerNorm, Linear, ModuleList from candle import Tensor import candle import candle.functional as F from typing import Tuple, Optional @dataclass class Config: vocab_size: int = 30522 hidden_size: int = 768 num_hidden_layers: int = 12 num_attention_heads: int = 12 intermediate_size: int = 3072 hidden_act: str = 'gelu' hidden_dropout_prob: float = 0.1 max_position_embeddings: int = 512 type_vocab_size: int = 2 initializer_range: float = 0.02 layer_norm_eps: float = 1e-12 pad_token_id: int = 0 position_embedding_type: str = 'absolute' use_cache: bool = True classifier_dropout: Optional[float] = None model_type: Optional[str] = 'bert' class BertSelfAttention(Module): def __init__(self, config: Config) -> None: super().__init__() self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / self.num_attention_heads) all_head_size = int(config.num_attention_heads * self.attention_head_size) hidden_size = config.hidden_size self.query = Linear(hidden_size, all_head_size) self.key = Linear(hidden_size, all_head_size) self.value = Linear(hidden_size, all_head_size) def transpose_for_scores(self, x: Tensor) -> Tensor: new_x_shape = x.shape[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.reshape(new_x_shape).transpose(1, 2) return x.contiguous() def forward(self, hidden_states: Tensor, attention_mask=None) -> Tensor: query = self.query.forward(hidden_states) key = self.key.forward(hidden_states) value = self.value.forward(hidden_states) query = self.transpose_for_scores(query) key = self.transpose_for_scores(key) value = self.transpose_for_scores(value) attention_scores = query.matmul(key.t()) attention_scores = attention_scores / float(self.attention_head_size) ** 0.5 if attention_mask is not None: (b_size, _, _, last_dim) = attention_scores.shape attention_scores = attention_scores.broadcast_add(attention_mask.reshape((b_size, 1, 1, last_dim))) attention_probs = F.softmax(attention_scores, dim=-1) context_layer = attention_probs.matmul(value) context_layer = context_layer.transpose(1, 2).contiguous() context_layer = context_layer.flatten_from(-2) return context_layer class BertSelfOutput(Module): def __init__(self, config: Config) -> None: super().__init__() self.dense = Linear(config.hidden_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: Tensor, input_tensor: Tensor) -> Tensor: hidden_states = self.dense.forward(hidden_states) return self.LayerNorm.forward(hidden_states + input_tensor) class BertAttention(Module): def __init__(self, config: Config) -> None: super().__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, hidden_states: Tensor, attention_mask: None) -> Tensor: self_outputs = self.self.forward(hidden_states, attention_mask=attention_mask) attention_output = self.output.forward(self_outputs, hidden_states) return attention_output class BertIntermediate(Module): def __init__(self, config: Config) -> None: super().__init__() self.dense = Linear(config.hidden_size, config.intermediate_size) self.act = F.gelu if config.hidden_act == 'gelu' else F.relu def forward(self, hidden_states: Tensor) -> Tensor: hidden_states = self.dense.forward(hidden_states) return self.act(hidden_states) class BertOutput(Module): def __init__(self, config: Config) -> None: super().__init__() self.dense = Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: Tensor, input_tensor: Tensor) -> Tensor: hidden_states = self.dense.forward(hidden_states) return self.LayerNorm.forward(hidden_states + input_tensor) class BertLayer(Module): def __init__(self, config: Config) -> None: super().__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states: Tensor, attention_mask=None) -> Tensor: attention_output = self.attention.forward(hidden_states, attention_mask=attention_mask) intermediate_output = self.intermediate.forward(attention_output) layer_output = self.output.forward(intermediate_output, attention_output) return layer_output class BertEncoder(Module): def __init__(self, config: Config) -> None: super().__init__() self.layer = ModuleList() for _ in range(config.num_hidden_layers): self.layer.append(BertLayer(config)) def forward(self, hidden_states: Tensor, attention_mask=None) -> Tensor: for l in self.layer: hidden_states = l.forward(hidden_states, attention_mask=attention_mask) return hidden_states class BertEmbeddings(Module): def __init__(self, config: Config) -> None: super().__init__() self.word_embeddings = Embedding(config.vocab_size, config.hidden_size) self.position_embeddings = Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = Embedding(config.type_vocab_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.position_ids = candle.Tensor(list(range(config.max_position_embeddings))).reshape((1, config.max_position_embeddings)) def forward(self, input_ids: Tensor, token_type_ids: Tensor) -> Tensor: (_batch_size, seq_len) = input_ids.shape input_embeddings = self.word_embeddings.forward(input_ids) token_type_embeddings = self.token_type_embeddings.forward(token_type_ids) embeddings: Tensor = input_embeddings + token_type_embeddings position_ids = list(range(seq_len)) position_ids = Tensor(position_ids).to_dtype(input_ids.dtype).to_device(input_ids.device) embeddings = embeddings.broadcast_add(self.position_embeddings.forward(position_ids)) embeddings = self.LayerNorm(embeddings) return embeddings class BertPooler(Module): def __init__(self, config: Config) -> None: super().__init__() self.dense = Linear(config.hidden_size, config.hidden_size) self.activation = F.tanh def forward(self, hidden_states: Tensor) -> Tensor: first_token_tensor = hidden_states[:, 0] pooled_output = self.dense.forward(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output def masked_fill(on_false: float, mask: Tensor, on_true: float): shape = mask.shape on_true = candle.tensor(on_true).broadcast_as(shape) on_false = candle.tensor(on_false).broadcast_as(shape) return mask.where_cond(on_true, on_false) class BertModel(Module): def __init__(self, config: Config, add_pooling_layer=True) -> None: super().__init__() self.config = config self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) if add_pooling_layer else None def forward(self, input_ids: Tensor, token_type_ids: Tensor, attention_mask=None) -> Tuple[Tensor, Optional[Tensor]]: if attention_mask is not None: attention_mask = masked_fill(float('-inf'), attention_mask, 1.0) embeddings = self.embeddings.forward(input_ids, token_type_ids) encoder_out = self.encoder.forward(embeddings, attention_mask=attention_mask) pooled_output = self.pooler(encoder_out) if self.pooler is not None else None return (encoder_out, pooled_output) # File: candle-main/candle-pyo3/py_src/candle/models/llama.py import candle from typing import Dict, Tuple, Any from candle import Tensor, QTensor, utils, nn from candle.nn import Module, ModuleList def masked_fill(on_false: Tensor, mask: Tensor, on_true: Tensor): shape = mask.shape on_true = candle.tensor(on_true).broadcast_as(shape) return mask.where_cond(on_true, on_false) def precompute_freqs_cis(hparams: Dict[str, Any], freq_base: float, max_seq_len: int): head_dim = hparams['n_embd'] // hparams['n_head'] theta = [1.0 / freq_base ** (i / head_dim) for i in range(0, head_dim, 2)] theta = candle.tensor(theta) idx_theta = [float(i) for i in range(max_seq_len)] idx_theta = candle.tensor(idx_theta).reshape((max_seq_len, 1)) m = idx_theta.matmul(theta.unsqueeze(0)) return (m.cos(), m.sin()) class RmsNorm(Module): def __init__(self, qtensor: QTensor): super().__init__() self.weight = qtensor.dequantize() def forward(self, x: Tensor) -> Tensor: (b_size, seq_len, hidden_size) = x.shape norm_x = x.sqr().sum_keepdim(2) / hidden_size x_normed = x.broadcast_div((norm_x + 1e-05).sqrt()) return x_normed.broadcast_mul(self.weight) class QuantizedLayer(Module): def __init__(self, layer_idx: int, hparams: Dict[str, Any], all_tensors: Dict[str, QTensor], cos_sin: Tuple[Tensor, Tensor]): super().__init__() p = f'layers.{layer_idx}' self.attention_wq = all_tensors[f'{p}.attention.wq.weight'] self.attention_wk = all_tensors[f'{p}.attention.wk.weight'] self.attention_wv = all_tensors[f'{p}.attention.wv.weight'] self.attention_wo = all_tensors[f'{p}.attention.wo.weight'] self.ffw1 = all_tensors[f'{p}.feed_forward.w1.weight'] self.ffw2 = all_tensors[f'{p}.feed_forward.w2.weight'] self.ffw3 = all_tensors[f'{p}.feed_forward.w3.weight'] self.attn_norm = RmsNorm(all_tensors[f'{p}.attention_norm.weight']) self.ffn_norm = RmsNorm(all_tensors[f'{p}.ffn_norm.weight']) self.n_head = hparams['n_head'] self.n_kv_head = self.n_head self.head_dim = hparams['n_embd'] // self.n_head self.kv_cache = None self.cos = cos_sin[0] self.sin = cos_sin[1] self._non_persistent_buffers_set.add('cos') self._non_persistent_buffers_set.add('sin') def forward(self, x: Tensor, mask: Tensor, index_pos: int) -> Tensor: residual = x x = self.attn_norm(x) attn = self.forward_attn(x, mask, index_pos) x = attn + residual residual = x x = self.ffn_norm(x) w1 = self.ffw1.matmul_t(x) w3 = self.ffw3.matmul_t(x) mlp = self.ffw2.matmul_t(nn.silu(w1) * w3) return mlp + residual def forward_attn(self, x: Tensor, mask: Tensor, index_pos: int): (b_size, seq_len, n_embd) = x.shape q = self.attention_wq.matmul_t(x) k = self.attention_wk.matmul_t(x) v = self.attention_wv.matmul_t(x) q = q.reshape((b_size, seq_len, self.n_head, self.head_dim)).transpose(1, 2) k = k.reshape((b_size, seq_len, self.n_kv_head, self.head_dim)).transpose(1, 2) v = v.reshape((b_size, seq_len, self.n_kv_head, self.head_dim)).transpose(1, 2) q = self.apply_rotary_emb(q, index_pos) k = self.apply_rotary_emb(k, index_pos) if self.kv_cache is not None and index_pos > 0: (prev_k, prev_v) = self.kv_cache k = candle.cat([prev_k, k], 2).contiguous() v = candle.cat([prev_v, v], 2).contiguous() self.kv_cache = (k, v) att = q.matmul(k.t()) / self.head_dim ** 0.5 mask = mask.broadcast_as(att.shape) att = masked_fill(att, mask, float('-inf')) att = nn.softmax(att, -1) y = att.matmul(v.contiguous()) y = y.transpose(1, 2).reshape((b_size, seq_len, n_embd)) return self.attention_wo.matmul_t(y) def apply_rotary_emb(self, x: Tensor, index_pos: int): (b_size, n_head, seq_len, n_embd) = x.shape cos = self.cos.narrow(0, index_pos, seq_len).reshape((seq_len, n_embd // 2, 1)) sin = self.sin.narrow(0, index_pos, seq_len).reshape((seq_len, n_embd // 2, 1)) x = x.reshape((b_size, n_head, seq_len, n_embd // 2, 2)) x0 = x.narrow(-1, 0, 1) x1 = x.narrow(-1, 1, 1) y0 = x0.broadcast_mul(cos) - x1.broadcast_mul(sin) y1 = x0.broadcast_mul(sin) + x1.broadcast_mul(cos) rope = candle.cat([y0, y1], -1) return rope.flatten_from(-2) class QuantizedLlama(Module): def __init__(self, hparams: Dict[str, Any], all_tensors: Dict[str, QTensor]): super().__init__() self.tok_embeddings = all_tensors['tok_embeddings.weight'].dequantize() self.norm = RmsNorm(all_tensors['norm.weight']) self.output = all_tensors['output.weight'] self.layers = ModuleList() rope_freq = hparams.get('rope_freq', 10000.0) cos_sin = precompute_freqs_cis(hparams, rope_freq, hparams['context_length']) for layer_idx in range(hparams['n_layer']): layer = QuantizedLayer(layer_idx, hparams, all_tensors, cos_sin) self.layers.append(layer) def forward(self, token: Tensor, index_pos: int) -> Tensor: (b_size, seq_len) = token.shape (vocab_size, hidden_size) = self.tok_embeddings.shape token = token.reshape((b_size * seq_len,)) x = self.tok_embeddings.index_select(token, 0) x = x.reshape((b_size, seq_len, hidden_size)) mask = [int(j > i) for j in range(seq_len) for i in range(seq_len)] mask = candle.tensor(mask).reshape((seq_len, seq_len)) for layer in self.layers: x = layer(x, mask, index_pos) x = self.norm(x) x = x.narrow(1, -1, 1).squeeze(1) x = self.output.matmul_t(x) return x # File: candle-main/candle-pyo3/py_src/candle/nn/container.py from .module import Module from typing import Any, Dict, Iterable, Iterator, Mapping, Optional, overload, Tuple, TypeVar, Union from collections import OrderedDict, abc as container_abcs import operator from itertools import chain, islice __all__ = ['Sequential', 'ModuleList', 'ModuleDict'] T = TypeVar('T', bound=Module) def _addindent(s_: str, numSpaces: int): s = s_.split('\n') if len(s) == 1: return s_ first = s.pop(0) s = [numSpaces * ' ' + line for line in s] s = '\n'.join(s) s = first + '\n' + s return s class Sequential(Module): _modules: Dict[str, Module] @overload def __init__(self, *args: Module) -> None: ... @overload def __init__(self, arg: 'OrderedDict[str, Module]') -> None: ... def __init__(self, *args): super().__init__() if len(args) == 1 and isinstance(args[0], OrderedDict): for (key, module) in args[0].items(): self.add_module(key, module) else: for (idx, module) in enumerate(args): self.add_module(str(idx), module) def _get_item_by_idx(self, iterator, idx) -> T: size = len(self) idx = operator.index(idx) if not -size <= idx < size: raise IndexError('index {} is out of range'.format(idx)) idx %= size return next(islice(iterator, idx, None)) def __getitem__(self, idx: Union[slice, int]) -> Union['Sequential', T]: if isinstance(idx, slice): return self.__class__(OrderedDict(list(self._modules.items())[idx])) else: return self._get_item_by_idx(self._modules.values(), idx) def __setitem__(self, idx: int, module: Module) -> None: key: str = self._get_item_by_idx(self._modules.keys(), idx) return setattr(self, key, module) def __delitem__(self, idx: Union[slice, int]) -> None: if isinstance(idx, slice): for key in list(self._modules.keys())[idx]: delattr(self, key) else: key = self._get_item_by_idx(self._modules.keys(), idx) delattr(self, key) str_indices = [str(i) for i in range(len(self._modules))] self._modules = OrderedDict(list(zip(str_indices, self._modules.values()))) def __len__(self) -> int: return len(self._modules) def __add__(self, other) -> 'Sequential': if isinstance(other, Sequential): ret = Sequential() for layer in self: ret.append(layer) for layer in other: ret.append(layer) return ret else: raise ValueError('add operator supports only objects of Sequential class, but {} is given.'.format(str(type(other)))) def pop(self, key: Union[int, slice]) -> Module: v = self[key] del self[key] return v def __iadd__(self, other) -> 'Sequential': if isinstance(other, Sequential): offset = len(self) for (i, module) in enumerate(other): self.add_module(str(i + offset), module) return self else: raise ValueError('add operator supports only objects of Sequential class, but {} is given.'.format(str(type(other)))) def __mul__(self, other: int) -> 'Sequential': if not isinstance(other, int): raise TypeError(f'unsupported operand type(s) for *: {type(self)} and {type(other)}') elif other <= 0: raise ValueError(f'Non-positive multiplication factor {other} for {type(self)}') else: combined = Sequential() offset = 0 for _ in range(other): for module in self: combined.add_module(str(offset), module) offset += 1 return combined def __rmul__(self, other: int) -> 'Sequential': return self.__mul__(other) def __imul__(self, other: int) -> 'Sequential': if not isinstance(other, int): raise TypeError(f'unsupported operand type(s) for *: {type(self)} and {type(other)}') elif other <= 0: raise ValueError(f'Non-positive multiplication factor {other} for {type(self)}') else: len_original = len(self) offset = len(self) for _ in range(other - 1): for i in range(len_original): self.add_module(str(i + offset), self._modules[str(i)]) offset += len_original return self def __dir__(self): keys = super().__dir__() keys = [key for key in keys if not key.isdigit()] return keys def __iter__(self) -> Iterator[Module]: return iter(self._modules.values()) def forward(self, input): for module in self: input = module(input) return input def append(self, module: Module) -> 'Sequential': self.add_module(str(len(self)), module) return self def insert(self, index: int, module: Module) -> 'Sequential': if not isinstance(module, Module): raise AssertionError('module should be of type: {}'.format(Module)) n = len(self._modules) if not -n <= index <= n: raise IndexError('Index out of range: {}'.format(index)) if index < 0: index += n for i in range(n, index, -1): self._modules[str(i)] = self._modules[str(i - 1)] self._modules[str(index)] = module return self def extend(self, sequential) -> 'Sequential': for layer in sequential: self.append(layer) return self class ModuleList(Module): _modules: Dict[str, Module] def __init__(self, modules: Optional[Iterable[Module]]=None) -> None: super().__init__() if modules is not None: self += modules def _get_abs_string_index(self, idx): idx = operator.index(idx) if not -len(self) <= idx < len(self): raise IndexError('index {} is out of range'.format(idx)) if idx < 0: idx += len(self) return str(idx) def __getitem__(self, idx: Union[int, slice]) -> Union[Module, 'ModuleList']: if isinstance(idx, slice): return self.__class__(list(self._modules.values())[idx]) else: return self._modules[self._get_abs_string_index(idx)] def __setitem__(self, idx: int, module: Module) -> None: idx = self._get_abs_string_index(idx) return setattr(self, str(idx), module) def __delitem__(self, idx: Union[int, slice]) -> None: if isinstance(idx, slice): for k in range(len(self._modules))[idx]: delattr(self, str(k)) else: delattr(self, self._get_abs_string_index(idx)) str_indices = [str(i) for i in range(len(self._modules))] self._modules = OrderedDict(list(zip(str_indices, self._modules.values()))) def __len__(self) -> int: return len(self._modules) def __iter__(self) -> Iterator[Module]: return iter(self._modules.values()) def __iadd__(self, modules: Iterable[Module]) -> 'ModuleList': return self.extend(modules) def __add__(self, other: Iterable[Module]) -> 'ModuleList': combined = ModuleList() for (i, module) in enumerate(chain(self, other)): combined.add_module(str(i), module) return combined def __repr__(self): list_of_reprs = [repr(item) for item in self] if len(list_of_reprs) == 0: return self._get_name() + '()' start_end_indices = [[0, 0]] repeated_blocks = [list_of_reprs[0]] for (i, r) in enumerate(list_of_reprs[1:], 1): if r == repeated_blocks[-1]: start_end_indices[-1][1] += 1 continue start_end_indices.append([i, i]) repeated_blocks.append(r) lines = [] main_str = self._get_name() + '(' for ((start_id, end_id), b) in zip(start_end_indices, repeated_blocks): local_repr = f'({start_id}): {b}' if start_id != end_id: n = end_id - start_id + 1 local_repr = f'({start_id}-{end_id}): {n} x {b}' local_repr = _addindent(local_repr, 2) lines.append(local_repr) main_str += '\n ' + '\n '.join(lines) + '\n' main_str += ')' return main_str def __dir__(self): keys = super().__dir__() keys = [key for key in keys if not key.isdigit()] return keys def insert(self, index: int, module: Module) -> None: for i in range(len(self._modules), index, -1): self._modules[str(i)] = self._modules[str(i - 1)] self._modules[str(index)] = module def append(self, module: Module) -> 'ModuleList': self.add_module(str(len(self)), module) return self def pop(self, key: Union[int, slice]) -> Module: v = self[key] del self[key] return v def extend(self, modules: Iterable[Module]) -> 'ModuleList': if not isinstance(modules, container_abcs.Iterable): raise TypeError('ModuleList.extend should be called with an iterable, but got ' + type(modules).__name__) offset = len(self) for (i, module) in enumerate(modules): self.add_module(str(offset + i), module) return self class ModuleDict(Module): _modules: Dict[str, Module] def __init__(self, modules: Optional[Mapping[str, Module]]=None) -> None: super().__init__() if modules is not None: self.update(modules) def __getitem__(self, key: str) -> Module: return self._modules[key] def __setitem__(self, key: str, module: Module) -> None: self.add_module(key, module) def __delitem__(self, key: str) -> None: del self._modules[key] def __len__(self) -> int: return len(self._modules) def __iter__(self) -> Iterator[str]: return iter(self._modules) def __contains__(self, key: str) -> bool: return key in self._modules def clear(self) -> None: self._modules.clear() def pop(self, key: str) -> Module: v = self[key] del self[key] return v def keys(self) -> Iterable[str]: return self._modules.keys() def items(self) -> Iterable[Tuple[str, Module]]: return self._modules.items() def values(self) -> Iterable[Module]: return self._modules.values() def update(self, modules: Mapping[str, Module]) -> None: if not isinstance(modules, container_abcs.Iterable): raise TypeError('ModuleDict.update should be called with an iterable of key/value pairs, but got ' + type(modules).__name__) if isinstance(modules, (OrderedDict, ModuleDict, container_abcs.Mapping)): for (key, module) in modules.items(): self[key] = module else: for (j, m) in enumerate(modules): if not isinstance(m, container_abcs.Iterable): raise TypeError('ModuleDict update sequence element #' + str(j) + ' should be Iterable; is' + type(m).__name__) if not len(m) == 2: raise ValueError('ModuleDict update sequence element #' + str(j) + ' has length ' + str(len(m)) + '; 2 is required') self[m[0]] = m[1] # File: candle-main/candle-pyo3/py_src/candle/nn/linear.py import math from typing import Any import candle from candle import Tensor from .module import Module class Identity(Module): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__() def forward(self, input: Tensor) -> Tensor: return input class Linear(Module): __constants__ = ['in_features', 'out_features'] in_features: int out_features: int weight: Tensor def __init__(self, in_features: int, out_features: int, bias: bool=True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self._quantizable_buffers.add('weight') self.in_features = in_features self.out_features = out_features self.weight = candle.ones((out_features, in_features), **factory_kwargs) if bias: self.bias = candle.zeros((out_features,), **factory_kwargs) else: self.bias = None def forward(self, x: Tensor) -> Tensor: dims = x.shape last_dim = dims[-1] if isinstance(self.weight, candle.QTensor): if len(dims) < 3: matmul_result = self.weight.matmul_t(x).broadcast_add(self.bias) elif len(dims) == 3: (b, n, m) = dims output_shape = (b, n, self.out_features) re = x.reshape((b * n, m)) matmul_result = self.weight.matmul_t(re).reshape(output_shape) else: raise NotImplementedError("'QTensor.matmul_t' is not implemented for more than 3 dimensions") if self.bias: return matmul_result.broadcast_add(self.bias) else: if self.weight.shape[-1] == last_dim and len(dims) < 3: w = self.weight.t() else: batch_size = dims[0] w = self.weight.broadcast_left((batch_size,)).t() x = x.matmul(w) if self.bias is not None: x = x.broadcast_add(self.bias) return x def extra_repr(self) -> str: return f'in_features={self.in_features}, out_features={self.out_features}, bias={self.bias is not None}' # File: candle-main/candle-pyo3/py_src/candle/nn/module.py from candle import Tensor, QTensor, DType from typing import Dict, Tuple, Any, Optional, Union, Iterator, Set, overload, Mapping, TypeVar, List from collections import OrderedDict, namedtuple TensorLike = Union[Tensor, QTensor] T = TypeVar('T', bound='Module') class _IncompatibleKeys(namedtuple('IncompatibleKeys', ['missing_keys', 'unexpected_keys'])): def __repr__(self): if not self.missing_keys and (not self.unexpected_keys): return '<All keys matched successfully>' return super().__repr__() __str__ = __repr__ class Module: _modules: Dict[str, Optional['Module']] _buffers: Dict[str, Optional[TensorLike]] _non_persistent_buffers_set: Set[str] _quantizable_buffers: Set[str] _version: int = 1 def __init__(self, *args, **kwargs) -> None: super().__setattr__('_modules', OrderedDict()) super().__setattr__('_buffers', OrderedDict()) super().__setattr__('_non_persistent_buffers_set', set()) super().__setattr__('_quantizable_buffers', set()) def __call__(self, *input): return self.forward(*input) def forward(self, *input): pass def children(self) -> Iterator['Module']: for (name, module) in self.named_children(): yield module def named_children(self) -> Iterator[Tuple[str, 'Module']]: memo = set() for (name, module) in self._modules.items(): if module is not None and module not in memo: memo.add(module) yield (name, module) def add_module(self, name: str, module: Optional['Module']) -> None: if not isinstance(module, Module) and module is not None: raise TypeError(f'{str(module)} is not a Module subclass') elif not isinstance(name, str): raise TypeError(f'module name should be a string. Got {name}') elif hasattr(self, name) and name not in self._modules: raise KeyError(f"attribute '{name}' already exists") elif '.' in name: raise KeyError(f"""module name can't contain ".", got: {name}""") elif name == '': raise KeyError('module name can\'t be empty string ""') self._modules[name] = module def register_module(self, name: str, module: Optional['Module']) -> None: self.add_module(name, module) def modules(self) -> Iterator['Module']: for (_, module) in self.named_modules(): yield module def named_modules(self, memo: Optional[Set['Module']]=None, prefix: str='', remove_duplicate: bool=True): if memo is None: memo = set() if self not in memo: if remove_duplicate: memo.add(self) yield (prefix, self) for (name, module) in self._modules.items(): if module is None: continue submodule_prefix = prefix + ('.' if prefix else '') + name for m in module.named_modules(memo, submodule_prefix, remove_duplicate): yield m def buffers(self, recurse: bool=True) -> Iterator[TensorLike]: for (name, buf) in self.named_buffers(recurse=recurse): yield buf def named_buffers(self, prefix: str='', recurse: bool=True, remove_duplicate: bool=True) -> Iterator[Tuple[str, TensorLike]]: gen = self._named_members(lambda module: module._buffers.items(), prefix=prefix, recurse=recurse, remove_duplicate=remove_duplicate) yield from gen T_destination = TypeVar('T_destination', bound=Dict[str, Any]) @overload def state_dict(self, *, destination: T_destination, prefix: str=..., keep_vars: bool=...) -> T_destination: ... @overload def state_dict(self, *, prefix: str=..., keep_vars: bool=...) -> Dict[str, Any]: ... def state_dict(self, *args, destination=None, prefix='', keep_vars=False): if len(args) > 0: if destination is None: destination = args[0] if len(args) > 1 and prefix == '': prefix = args[1] if len(args) > 2 and keep_vars is False: keep_vars = args[2] if destination is None: destination = OrderedDict() destination._metadata = OrderedDict() local_metadata = dict(version=self._version) if hasattr(destination, '_metadata'): destination._metadata[prefix[:-1]] = local_metadata self._save_to_state_dict(destination, prefix, keep_vars) for (name, module) in self._modules.items(): if module is not None: module.state_dict(destination=destination, prefix=prefix + name + '.', keep_vars=keep_vars) return destination def _save_to_state_dict(self, destination, prefix, keep_vars): for (name, buf) in self._buffers.items(): if buf is not None and name not in self._non_persistent_buffers_set: if isinstance(buf, Tensor): destination[prefix + name] = buf if keep_vars else buf.detach() else: destination[prefix + name] = buf def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool=True, assign: bool=False): if not isinstance(state_dict, Mapping): raise TypeError(f'Expected state_dict to be dict-like, got {type(state_dict)}.') missing_keys: List[str] = [] unexpected_keys: List[str] = [] error_msgs: List[str] = [] metadata = getattr(state_dict, '_metadata', None) state_dict = OrderedDict(state_dict) if metadata is not None: state_dict._metadata = metadata def load(module, local_state_dict, prefix=''): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) if assign: local_metadata['assign_to_params_buffers'] = assign module._load_from_state_dict(local_state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for (name, child) in module._modules.items(): if child is not None: child_prefix = prefix + name + '.' child_state_dict = {k: v for (k, v) in local_state_dict.items() if k.startswith(child_prefix)} load(child, child_state_dict, child_prefix) load(self, state_dict) del load if strict: if len(unexpected_keys) > 0: error_msgs.insert(0, 'Unexpected key(s) in state_dict: {}. '.format(', '.join((f'"{k}"' for k in unexpected_keys)))) if len(missing_keys) > 0: error_msgs.insert(0, 'Missing key(s) in state_dict: {}. '.format(', '.join((f'"{k}"' for k in missing_keys)))) if len(error_msgs) > 0: raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(self.__class__.__name__, '\n\t'.join(error_msgs))) return _IncompatibleKeys(missing_keys, unexpected_keys) def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): persistent_buffers = {k: v for (k, v) in self._buffers.items() if k not in self._non_persistent_buffers_set} local_name_params = persistent_buffers.items() local_state = {k: v for (k, v) in local_name_params if v is not None} for (name, param) in local_state.items(): key = prefix + name if key in state_dict: input_param = state_dict[key] if not isinstance(input_param, (Tensor, QTensor)): error_msgs.append(f'While copying the parameter named "{key}", expected Tensor-like object from checkpoint but received {type(input_param)}') continue if input_param.shape != param.shape: error_msgs.append('size mismatch for {}: copying a param with shape {} from checkpoint, the shape in current model is {}.'.format(key, input_param.shape, param.shape)) continue try: setattr(self, name, input_param) except Exception as ex: error_msgs.append(f'While copying the parameter named "{key}", whose dimensions in the model are {param.shape} and whose dimensions in the checkpoint are {input_param.shape}, an exception occurred : {ex.args}.') elif strict: missing_keys.append(key) if strict: for key in state_dict.keys(): if key.startswith(prefix): input_name = key[len(prefix):] input_name = input_name.split('.', 1)[0] if input_name not in self._modules and input_name not in local_state: unexpected_keys.append(key) def _named_members(self, get_members_fn, prefix='', recurse=True, remove_duplicate: bool=True): memo = set() modules = self.named_modules(prefix=prefix, remove_duplicate=remove_duplicate) if recurse else [(prefix, self)] for (module_prefix, module) in modules: members = get_members_fn(module) for (k, v) in members: if v is None or v in memo: continue if remove_duplicate: memo.add(v) name = module_prefix + ('.' if module_prefix else '') + k yield (name, v) def _get_name(self): return self.__class__.__name__ def _apply(self, fn): for module in self.children(): module._apply(fn) for (key, buf) in self._buffers.items(): if buf is not None: self._buffers[key] = fn(buf) return self def __move_tensor_to_device(self, tensor: TensorLike, device: str): if isinstance(tensor, Tensor): return tensor.to_device(device) else: raise NotImplementedError('Cannot offload QTensor to cuda, yet!') def device(self) -> str: tensor = next(self.buffers()) if isinstance(tensor, Tensor): return tensor.device else: return 'cpu' def cuda(self: T) -> T: def to_cuda(t: TensorLike): return self.__move_tensor_to_device(t, 'cuda') return self._apply(to_cuda) def cpu(self: T) -> T: def to_cpu(t: TensorLike): return self.__move_tensor_to_device(t, 'cpu') return self._apply(to_cpu) def __cast_tensor(self, tensor: TensorLike, dtype: Union[DType, str]): if isinstance(tensor, Tensor): return tensor.to_dtype(dtype) else: raise TypeError('candle.Module.to only accepts Tensor dtypes, but got desired dtype={}'.format(dtype)) def type(self: T, dst_type: Union[DType, str]) -> T: def cast(t: TensorLike): return self.__cast_tensor(t, dst_type) return self._apply(cast) @overload def to(self: T, device: str=..., dtype: Optional[Union[DType, str]]=...) -> T: ... @overload def to(self: T, dtype: Union[DType, str]) -> T: ... def to(self, *args, **kwargs): device = None dtype = None if args: for arg in args: if isinstance(arg, str): lower_arg = str(arg).lower() if lower_arg.startswith('cuda') or lower_arg == 'cpu': device = lower_arg else: dtype = arg elif isinstance(arg, DType): dtype = str(arg) else: raise TypeError('Module.to() received an invalid combination of arguments. Got: {}'.format(args)) if kwargs: device = kwargs.get('device', device) dtype = str(kwargs.get('dtype', dtype)) if device: device = device.lower() if dtype: dtype = dtype.lower() if dtype not in ['f32', 'f16', 'f64']: raise TypeError('candle.Module.to only accepts floating pointdtypes, but got desired dtype={}'.format(dtype)) def convert(t): if dtype: t = self.__cast_tensor(t, dtype) if device: t = self.__move_tensor_to_device(t, device) return t return self._apply(convert) def __setattr__(self, __name: str, __value: Any) -> None: if isinstance(__value, Module): self._modules[__name] = __value elif isinstance(__value, QTensor): if __name in self._quantizable_buffers: type = __value.ggml_dtype.lower() if type in ['f32', 'f16']: dequant = __value.dequantize() if type == 'f16': dequant = dequant.to_dtype('f16') self._buffers[__name] = dequant else: self._buffers[__name] = __value else: self._buffers[__name] = __value.dequantize() elif isinstance(__value, Tensor): self._buffers[__name] = __value else: super().__setattr__(__name, __value) def __getattr__(self, __name: str) -> Any: if '_modules' in self.__dict__: modules = self.__dict__['_modules'] if __name in modules: return modules[__name] if '_buffers' in self.__dict__: tensors = self.__dict__['_buffers'] if __name in tensors: return tensors[__name] return super().__getattribute__(__name) def __delattr__(self, name): if name in self._buffers: del self._buffers[name] elif name in self._modules: del self._modules[name] else: super().__delattr__(name) # File: candle-main/candle-pyo3/py_src/candle/nn/normalization.py import candle from candle import Tensor from .module import Module from typing import Union, List, Tuple, Optional, Any _shape_t = Union[int, List[int]] import numbers class LayerNorm(Module): __constants__ = ['normalized_shape', 'eps'] normalized_shape: Tuple[int, ...] eps: float def __init__(self, normalized_shape: _shape_t, eps: float=1e-05, bias: bool=True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() if isinstance(normalized_shape, numbers.Integral): normalized_shape = (normalized_shape,) self.normalized_shape = tuple(normalized_shape) self.eps = eps self.weight = candle.ones(normalized_shape, **factory_kwargs) if bias: self.bias = candle.zeros(normalized_shape, **factory_kwargs) else: self.bias = None def forward(self, input: Tensor) -> Tensor: mean_x = input.sum_keepdim(2) / float(self.normalized_shape[-1]) x = input.broadcast_sub(mean_x) norm_x = x.sqr().sum_keepdim(2) / float(self.normalized_shape[-1]) x_normed = x.broadcast_div((norm_x + self.eps).sqrt()) x = x_normed.broadcast_mul(self.weight) if self.bias: x = x.broadcast_add(self.bias) return x def extra_repr(self) -> str: return '{normalized_shape}, eps={eps}, elementwise_affine={elementwise_affine}'.format(**self.__dict__) # File: candle-main/candle-pyo3/py_src/candle/nn/sparse.py from .module import Module from typing import Optional, Tuple, Any from candle import Tensor import candle class Embedding(Module): def __init__(self, num_embeddings: int, embedding_dim: int, device=None) -> None: factory_kwargs = {'device': device} super().__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim self.weight = candle.randn((num_embeddings, embedding_dim), **factory_kwargs) def forward(self, indexes: Tensor) -> Tensor: final_dims = list(indexes.shape) final_dims.append(self.embedding_dim) indexes = indexes.flatten_all() values = self.weight.index_select(indexes, 0) return values.reshape(final_dims) # File: candle-main/candle-pyo3/py_src/candle/typing/__init__.py from typing import TypeVar, Union, Sequence _T = TypeVar('_T') _ArrayLike = Union[_T, Sequence[_T], Sequence[Sequence[_T]], Sequence[Sequence[Sequence[_T]]], Sequence[Sequence[Sequence[Sequence[_T]]]]] CPU: str = 'cpu' CUDA: str = 'cuda' Device = TypeVar('Device', CPU, CUDA) Scalar = Union[int, float] Index = Union[int, slice, None, 'Ellipsis'] Shape = Union[int, Sequence[int]] # File: candle-main/candle-pyo3/quant-llama.py import sys from typing import Dict, Tuple, Any import candle from candle.models.llama import QuantizedLlama from candle import utils MAX_SEQ_LEN = 4096 def gguf_rename(tensor_name: str): if tensor_name == 'token_embd.weight': return 'tok_embeddings.weight' if tensor_name == 'output_norm.weight': return 'norm.weight' tensor_name = tensor_name.replace('blk.', 'layers.') tensor_name = tensor_name.replace('.attn_q.', '.attention.wq.') tensor_name = tensor_name.replace('.attn_k.', '.attention.wk.') tensor_name = tensor_name.replace('.attn_v.', '.attention.wv.') tensor_name = tensor_name.replace('.attn_output.', '.attention.wo.') tensor_name = tensor_name.replace('.ffn_gate.', '.feed_forward.w1.') tensor_name = tensor_name.replace('.ffn_down.', '.feed_forward.w2.') tensor_name = tensor_name.replace('.ffn_up.', '.feed_forward.w3.') tensor_name = tensor_name.replace('.attn_norm.', '.attention_norm.') return tensor_name def main(): if len(sys.argv) < 2: raise ValueError('missing weight file argument') filename = sys.argv[1] print(f'reading model file {filename}') if filename.endswith('gguf'): (all_tensors, metadata) = utils.load_gguf(filename) vocab = metadata['tokenizer.ggml.tokens'] for (i, v) in enumerate(vocab): vocab[i] = '\n' if v == '<0x0A>' else v.replace('▁', ' ') hparams = {k: v for (k, v) in metadata.items() if not k.startswith('tokenizer')} print(hparams) hparams = {'n_vocab': len(vocab), 'n_embd': metadata['llama.embedding_length'], 'n_mult': 256, 'n_head': metadata['llama.attention.head_count'], 'n_head_kv': metadata['llama.attention.head_count_kv'], 'n_layer': metadata['llama.block_count'], 'n_rot': metadata['llama.rope.dimension_count'], 'rope_freq': metadata.get('llama.rope.freq_base', 10000.0), 'ftype': metadata['general.file_type'], 'context_length': metadata['llama.context_length']} all_tensors = {gguf_rename(k): v for (k, v) in all_tensors.items()} else: (all_tensors, hparams, vocab) = utils.load_ggml(filename) hparams['context_length'] = 2048 print(hparams) model = QuantizedLlama(hparams, all_tensors) print('model built, starting inference') tokens = [1] for token_idx in range(500): last_token = tokens[-1] lt = candle.tensor([last_token]).unsqueeze(0) logits = model.forward(lt, len(tokens)) m = logits.get(0).argmax_keepdim(-1) next_token = m.values()[0] print(vocab[next_token], end='', flush=True) tokens.append(next_token) if __name__ == '__main__': main() # File: candle-main/candle-pyo3/stub.py import argparse import inspect import os from typing import Optional import black from pathlib import Path import re INDENT = ' ' * 4 GENERATED_COMMENT = '# Generated content DO NOT EDIT\n' TYPING = 'from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Sequence\nfrom os import PathLike\n' CANDLE_SPECIFIC_TYPING = 'from candle.typing import _ArrayLike, Device, Scalar, Index, Shape\n' CANDLE_TENSOR_IMPORTS = 'from candle import Tensor,DType,QTensor\n' RETURN_TYPE_MARKER = '&RETURNS&: ' ADDITIONAL_TYPEHINTS = {} FORWARD_REF_PATTERN = re.compile("ForwardRef\\('([^']+)'\\)") def do_indent(text: Optional[str], indent: str): if text is None: return '' return text.replace('\n', f'\n{indent}') def function(obj, indent: str, text_signature: str=None): if text_signature is None: text_signature = obj.__text_signature__ text_signature = text_signature.replace('$self', 'self').lstrip().rstrip() doc_string = obj.__doc__ if doc_string is None: doc_string = '' return_type = None doc_lines = doc_string.split('\n') if doc_lines[-1].lstrip().startswith(RETURN_TYPE_MARKER): return_type = doc_lines[-1].lstrip()[len(RETURN_TYPE_MARKER):].strip() doc_string = '\n'.join(doc_lines[:-1]) string = '' if return_type: string += f'{indent}def {obj.__name__}{text_signature} -> {return_type}:\n' else: string += f'{indent}def {obj.__name__}{text_signature}:\n' indent += INDENT string += f'{indent}"""\n' string += f'{indent}{do_indent(doc_string, indent)}\n' string += f'{indent}"""\n' string += f'{indent}pass\n' string += '\n' string += '\n' return string def member_sort(member): if inspect.isclass(member): value = 10 + len(inspect.getmro(member)) else: value = 1 return value def fn_predicate(obj): value = inspect.ismethoddescriptor(obj) or inspect.isbuiltin(obj) if value: return obj.__text_signature__ and (not obj.__name__.startswith('_')) if inspect.isgetsetdescriptor(obj): return not obj.__name__.startswith('_') return False def get_module_members(module): members = [member for (name, member) in inspect.getmembers(module) if not name.startswith('_') and (not inspect.ismodule(member))] members.sort(key=member_sort) return members def pyi_file(obj, indent=''): string = '' if inspect.ismodule(obj): string += GENERATED_COMMENT string += TYPING string += CANDLE_SPECIFIC_TYPING if obj.__name__ != 'candle.candle': string += CANDLE_TENSOR_IMPORTS members = get_module_members(obj) for member in members: string += pyi_file(member, indent) elif inspect.isclass(obj): indent += INDENT mro = inspect.getmro(obj) if len(mro) > 2: inherit = f'({mro[1].__name__})' else: inherit = '' string += f'class {obj.__name__}{inherit}:\n' body = '' if obj.__doc__: body += f'{indent}"""\n{indent}{do_indent(obj.__doc__, indent)}\n{indent}"""\n' fns = inspect.getmembers(obj, fn_predicate) if obj.__text_signature__: body += f'{indent}def __init__{obj.__text_signature__}:\n' body += f'{indent + INDENT}pass\n' body += '\n' if obj.__name__ in ADDITIONAL_TYPEHINTS: additional_members = inspect.getmembers(ADDITIONAL_TYPEHINTS[obj.__name__]) additional_functions = [] for (name, member) in additional_members: if inspect.isfunction(member): additional_functions.append((name, member)) def process_additional_function(fn): signature = inspect.signature(fn) cleaned_signature = re.sub(FORWARD_REF_PATTERN, '\\1', str(signature)) string = f'{indent}def {fn.__name__}{cleaned_signature}:\n' string += f'{indent + INDENT}"""{indent + INDENT}{do_indent(fn.__doc__, indent + INDENT)}{indent + INDENT}"""\n' string += f'{indent + INDENT}pass\n' string += '\n' return string for (name, fn) in additional_functions: body += process_additional_function(fn) for (name, fn) in fns: body += pyi_file(fn, indent=indent) if not body: body += f'{indent}pass\n' string += body string += '\n\n' elif inspect.isbuiltin(obj): string += f'{indent}@staticmethod\n' string += function(obj, indent) elif inspect.ismethoddescriptor(obj): string += function(obj, indent) elif inspect.isgetsetdescriptor(obj): string += f'{indent}@property\n' string += function(obj, indent, text_signature='(self)') elif obj.__class__.__name__ == 'DType': string += f'class {str(obj).lower()}(DType):\n' string += f'{indent + INDENT}pass\n' else: raise Exception(f'Object {obj} is not supported') return string def py_file(module, origin): members = get_module_members(module) string = GENERATED_COMMENT string += f'from .. import {origin}\n' string += '\n' for member in members: if hasattr(member, '__name__'): name = member.__name__ else: name = str(member) string += f'{name} = {origin}.{name}\n' return string def do_black(content, is_pyi): mode = black.Mode(target_versions={black.TargetVersion.PY35}, line_length=119, is_pyi=is_pyi, string_normalization=True) try: return black.format_file_contents(content, fast=True, mode=mode) except black.NothingChanged: return content def write(module, directory, origin, check=False): submodules = [(name, member) for (name, member) in inspect.getmembers(module) if inspect.ismodule(member)] filename = os.path.join(directory, '__init__.pyi') pyi_content = pyi_file(module) pyi_content = do_black(pyi_content, is_pyi=True) os.makedirs(directory, exist_ok=True) if check: with open(filename, 'r') as f: data = f.read() print('generated content') print(pyi_content) assert data == pyi_content, f'The content of {filename} seems outdated, please run `python stub.py`' else: with open(filename, 'w') as f: f.write(pyi_content) filename = os.path.join(directory, '__init__.py') py_content = py_file(module, origin) py_content = do_black(py_content, is_pyi=False) os.makedirs(directory, exist_ok=True) is_auto = False if not os.path.exists(filename): is_auto = True else: with open(filename, 'r') as f: line = f.readline() if line == GENERATED_COMMENT: is_auto = True if is_auto: if check: with open(filename, 'r') as f: data = f.read() print('generated content') print(py_content) assert data == py_content, f'The content of {filename} seems outdated, please run `python stub.py`' else: with open(filename, 'w') as f: f.write(py_content) for (name, submodule) in submodules: write(submodule, os.path.join(directory, name), f'{name}', check=check) def extract_additional_types(module): additional_types = {} for (name, member) in inspect.getmembers(module): if inspect.isclass(member): if hasattr(member, '__name__'): name = member.__name__ else: name = str(member) if name not in additional_types: additional_types[name] = member return additional_types if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--check', action='store_true') args = parser.parse_args() cwd = Path.cwd() directory = 'py_src/candle/' if cwd.name != 'candle-pyo3': directory = f'candle-pyo3/{directory}' import candle import _additional_typing ADDITIONAL_TYPEHINTS = extract_additional_types(_additional_typing) write(candle.candle, directory, 'candle', check=args.check) |