File size: 66,418 Bytes
b1d4de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
# File: notebooks-main/longform-qa/lfqa_utils.py
import functools
import math
import os
from random import choice, randint
from time import time
import numpy as np
import torch
import torch.utils.checkpoint as checkpoint
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
from tqdm import tqdm
import faiss
import nlp
import pandas as pd
from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk, streaming_bulk
from transformers import AdamW, AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer, get_linear_schedule_with_warmup
pd.set_option('display.max_colwidth', None)

def make_es_index_snippets(es_client, passages_dset, index_name='english_wiki_kilt_snippets_100w'):
    index_config = {'settings': {'number_of_shards': 1, 'analysis': {'analyzer': {'stop_standard': {'type': 'standard', ' stopwords': '_english_'}}}}, 'mappings': {'properties': {'article_title': {'type': 'text', 'analyzer': 'standard', 'similarity': 'BM25'}, 'section_title': {'type': 'text', 'analyzer': 'standard', 'similarity': 'BM25'}, 'passage_text': {'type': 'text', 'analyzer': 'standard', 'similarity': 'BM25'}}}}
    es_client.indices.create(index=index_name, body=index_config)
    number_of_docs = passages_dset.num_rows
    progress = tqdm(unit='docs', total=number_of_docs)
    successes = 0

    def passage_generator():
        for passage in passages_dset:
            yield passage
    for (ok, action) in streaming_bulk(client=es_client, index=index_name, actions=passage_generator()):
        progress.update(1)
        successes += ok
    print('Indexed %d documents' % (successes,))

def query_es_index(question, es_client, index_name='english_wiki_kilt_snippets_100w', n_results=10, min_length=20):
    q = question.lower()
    banned = ['how', 'why', 'what', 'where', 'which', 'do', 'does', 'is', '?', 'eli5', 'eli5:']
    q = ' '.join([w for w in q.split() if w not in banned])
    response = es_client.search(index=index_name, body={'query': {'multi_match': {'query': q, 'fields': ['article_title', 'section_title', 'passage_text^2'], 'type': 'cross_fields'}}, 'size': 2 * n_results})
    hits = response['hits']['hits']
    support_doc = '<P> ' + ' <P> '.join([hit['_source']['passage_text'] for hit in hits])
    res_list = [dict([(k, hit['_source'][k]) for k in hit['_source'] if k != 'passage_text']) for hit in hits]
    for (r, hit) in zip(res_list, hits):
        r['passage_id'] = hit['_id']
        r['score'] = hit['_score']
        r['passage_text'] = hit['_source']['passage_text']
    res_list = [res for res in res_list if len(res['passage_text'].split()) > min_length][:n_results]
    return (support_doc, res_list)

class ELI5DatasetQARetriver(Dataset):

    def __init__(self, examples_array, extra_answer_threshold=3, min_answer_length=64, training=True, n_samples=None):
        self.data = examples_array
        self.answer_thres = extra_answer_threshold
        self.min_length = min_answer_length
        self.training = training
        self.n_samples = self.data.num_rows if n_samples is None else n_samples

    def __len__(self):
        return self.n_samples

    def make_example(self, idx):
        example = self.data[idx]
        question = example['title']
        if self.training:
            answers = [a for (i, (a, sc)) in enumerate(zip(example['answers']['text'], example['answers']['score']))]
            answer_tab = choice(answers).split(' ')
            start_idx = randint(0, max(0, len(answer_tab) - self.min_length))
            answer_span = ' '.join(answer_tab[start_idx:])
        else:
            answer_span = example['answers']['text'][0]
        return (question, answer_span)

    def __getitem__(self, idx):
        return self.make_example(idx % self.data.num_rows)

class RetrievalQAEmbedder(torch.nn.Module):

    def __init__(self, sent_encoder, dim):
        super(RetrievalQAEmbedder, self).__init__()
        self.sent_encoder = sent_encoder
        self.output_dim = 128
        self.project_q = torch.nn.Linear(dim, self.output_dim, bias=False)
        self.project_a = torch.nn.Linear(dim, self.output_dim, bias=False)
        self.ce_loss = torch.nn.CrossEntropyLoss(reduction='mean')

    def embed_sentences_checkpointed(self, input_ids, attention_mask, checkpoint_batch_size=-1):
        if checkpoint_batch_size < 0 or input_ids.shape[0] < checkpoint_batch_size:
            return self.sent_encoder(input_ids, attention_mask=attention_mask)[1]
        else:
            device = input_ids.device
            input_shape = input_ids.size()
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
            head_mask = [None] * self.sent_encoder.config.num_hidden_layers
            extended_attention_mask: torch.Tensor = self.sent_encoder.get_extended_attention_mask(attention_mask, input_shape, device)

            def partial_encode(*inputs):
                encoder_outputs = self.sent_encoder.encoder(inputs[0], attention_mask=inputs[1], head_mask=head_mask)
                sequence_output = encoder_outputs[0]
                pooled_output = self.sent_encoder.pooler(sequence_output)
                return pooled_output
            embedding_output = self.sent_encoder.embeddings(input_ids=input_ids, position_ids=None, token_type_ids=token_type_ids, inputs_embeds=None)
            pooled_output_list = []
            for b in range(math.ceil(input_ids.shape[0] / checkpoint_batch_size)):
                b_embedding_output = embedding_output[b * checkpoint_batch_size:(b + 1) * checkpoint_batch_size]
                b_attention_mask = extended_attention_mask[b * checkpoint_batch_size:(b + 1) * checkpoint_batch_size]
                pooled_output = checkpoint.checkpoint(partial_encode, b_embedding_output, b_attention_mask)
                pooled_output_list.append(pooled_output)
            return torch.cat(pooled_output_list, dim=0)

    def embed_questions(self, q_ids, q_mask, checkpoint_batch_size=-1):
        q_reps = self.embed_sentences_checkpointed(q_ids, q_mask, checkpoint_batch_size)
        return self.project_q(q_reps)

    def embed_answers(self, a_ids, a_mask, checkpoint_batch_size=-1):
        a_reps = self.embed_sentences_checkpointed(a_ids, a_mask, checkpoint_batch_size)
        return self.project_a(a_reps)

    def forward(self, q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=-1):
        device = q_ids.device
        q_reps = self.embed_questions(q_ids, q_mask, checkpoint_batch_size)
        a_reps = self.embed_answers(a_ids, a_mask, checkpoint_batch_size)
        compare_scores = torch.mm(q_reps, a_reps.t())
        loss_qa = self.ce_loss(compare_scores, torch.arange(compare_scores.shape[1]).to(device))
        loss_aq = self.ce_loss(compare_scores.t(), torch.arange(compare_scores.shape[0]).to(device))
        loss = (loss_qa + loss_aq) / 2
        return loss

def make_qa_retriever_model(model_name='google/bert_uncased_L-8_H-512_A-8', from_file=None, device='cuda:0'):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    bert_model = AutoModel.from_pretrained(model_name).to(device)
    d_ids = torch.LongTensor([[bert_model.config.bos_token_id if bert_model.config.bos_token_id is not None else 1]]).to(device)
    d_mask = torch.LongTensor([[1]]).to(device)
    sent_dim = bert_model(d_ids, attention_mask=d_mask)[1].shape[-1]
    qa_embedder = RetrievalQAEmbedder(bert_model, sent_dim).to(device)
    if from_file is not None:
        param_dict = torch.load(from_file)
        qa_embedder.load_state_dict(param_dict['model'])
    return (tokenizer, qa_embedder)

def make_qa_retriever_batch(qa_list, tokenizer, max_len=64, device='cuda:0'):
    q_ls = [q for (q, a) in qa_list]
    a_ls = [a for (q, a) in qa_list]
    q_toks = tokenizer.batch_encode_plus(q_ls, max_length=max_len, pad_to_max_length=True)
    (q_ids, q_mask) = (torch.LongTensor(q_toks['input_ids']).to(device), torch.LongTensor(q_toks['attention_mask']).to(device))
    a_toks = tokenizer.batch_encode_plus(a_ls, max_length=max_len, pad_to_max_length=True)
    (a_ids, a_mask) = (torch.LongTensor(a_toks['input_ids']).to(device), torch.LongTensor(a_toks['attention_mask']).to(device))
    return (q_ids, q_mask, a_ids, a_mask)

def train_qa_retriever_epoch(model, dataset, tokenizer, optimizer, scheduler, args, e=0):
    model.train()
    train_sampler = RandomSampler(dataset)
    model_collate_fn = functools.partial(make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device='cuda:0')
    data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn)
    epoch_iterator = tqdm(data_loader, desc='Iteration', disable=True)
    loc_steps = 0
    loc_loss = 0.0
    st_time = time()
    for (step, batch) in enumerate(epoch_iterator):
        (q_ids, q_mask, a_ids, a_mask) = batch
        pre_loss = model(q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=args.checkpoint_batch_size)
        loss = pre_loss.sum()
        loss.backward()
        optimizer.step()
        scheduler.step()
        model.zero_grad()
        loc_loss += loss.item()
        loc_steps += 1
        if step % args.print_freq == 0 or step == 1:
            print('{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}'.format(e, step, len(dataset) // args.batch_size, loc_loss / loc_steps, time() - st_time))
            loc_loss = 0
            loc_steps = 0

def train_qa_retriever_joint_epoch(model, dataset_list, tokenizer, optimizer, scheduler, args, e=0):
    model.train()
    model_collate_fn = functools.partial(make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device='cuda:0')
    train_samplers = [RandomSampler(dataset) for dataset in dataset_list]
    data_loaders = [DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn) for (dataset, train_sampler) in zip(dataset_list, train_samplers)]
    iterators = [iter(dloader) for dloader in data_loaders]
    joint_iter = zip(*iterators)
    loc_steps = 0
    loc_loss = 0.0
    st_time = time()
    for (step, (batches,)) in enumerate(zip(joint_iter)):
        for batch in batches:
            (q_ids, q_mask, a_ids, a_mask) = batch
            loss = model(q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=args.checkpoint_batch_size)
            loss.backward()
            optimizer.step()
            scheduler.step()
            model.zero_grad()
            loc_loss += loss.item()
            loc_steps += 1
        if step % args.print_freq == 0:
            print('{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}'.format(e, step, len(dataset_list[0]) // args.batch_size, loc_loss / loc_steps, time() - st_time))
            loc_loss = 0
            loc_steps = 0

def evaluate_qa_retriever(model, dataset, tokenizer, args):
    model.eval()
    eval_sampler = SequentialSampler(dataset)
    model_collate_fn = functools.partial(make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device='cuda:0')
    data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=eval_sampler, collate_fn=model_collate_fn)
    epoch_iterator = tqdm(data_loader, desc='Iteration', disable=True)
    tot_loss = 0.0
    with torch.no_grad():
        for (step, batch) in enumerate(epoch_iterator):
            (q_ids, q_mask, a_ids, a_mask) = batch
            loss = model(q_ids, q_mask, a_ids, a_mask)
            tot_loss += loss.item()
        return tot_loss / (step + 1)

def train_qa_retriever(qar_model, qar_tokenizer, qar_train_dset, qar_valid_dset, qar_args):
    qar_optimizer = AdamW(qar_model.parameters(), lr=qar_args.learning_rate, eps=1e-08)
    qar_scheduler = get_linear_schedule_with_warmup(qar_optimizer, num_warmup_steps=100, num_training_steps=(qar_args.num_epochs + 1) * math.ceil(len(qar_train_dset) / qar_args.batch_size))
    for e in range(qar_args.num_epochs):
        train_qa_retriever_epoch(qar_model, qar_train_dset, qar_tokenizer, qar_optimizer, qar_scheduler, qar_args, e)
        m_save_dict = {'model': qar_model.state_dict(), 'optimizer': qar_optimizer.state_dict(), 'scheduler': qar_scheduler.state_dict()}
        print('Saving model {}'.format(qar_args.model_save_name))
        torch.save(m_save_dict, '{}_{}.pth'.format(qar_args.model_save_name, e))
        eval_loss = evaluate_qa_retriever(qar_model, qar_valid_dset, qar_tokenizer, qar_args)
        print('Evaluation loss epoch {:4d}: {:.3f}'.format(e, eval_loss))

class ELI5DatasetS2S(Dataset):

    def __init__(self, examples_array, make_doc_fun=None, extra_answer_threshold=3, document_cache=None, training=True):
        self.training = training
        self.data = examples_array
        self.make_doc_function = make_doc_fun
        self.document_cache = {} if document_cache is None else document_cache
        assert not (make_doc_fun is None and document_cache is None)
        if self.training:
            self.qa_id_list = [(i, j) for (i, qa) in enumerate(self.data) for (j, (a, sc)) in enumerate(zip(qa['answers']['text'], qa['answers']['score'])) if j == 0 or sc >= extra_answer_threshold]
        else:
            self.qa_id_list = [(i, 0) for i in range(self.data.num_rows)]

    def __len__(self):
        return len(self.qa_id_list)

    def make_example(self, idx):
        (i, j) = self.qa_id_list[idx]
        example = self.data[i]
        question = example['title'] + ' ' + example['selftext']
        answer = example['answers']['text'][j]
        q_id = example['q_id']
        if self.make_doc_function is not None:
            self.document_cache[q_id] = self.document_cache.get(q_id, self.make_doc_function(example['title']))
        document = self.document_cache[q_id]
        in_st = 'question: {} context: {}'.format(question.lower().replace(' --t--', '').strip(), document.lower().strip())
        out_st = answer
        return (in_st, out_st)

    def __getitem__(self, idx):
        return self.make_example(idx)

def make_qa_s2s_model(model_name='facebook/bart-large', from_file=None, device='cuda:0'):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
    if from_file is not None:
        param_dict = torch.load(from_file)
        model.load_state_dict(param_dict['model'])
    return (tokenizer, model)

def make_qa_s2s_batch(qa_list, tokenizer, max_len=64, max_a_len=360, device='cuda:0'):
    q_ls = [q for (q, a) in qa_list]
    a_ls = [a for (q, a) in qa_list]
    q_toks = tokenizer.batch_encode_plus(q_ls, max_length=max_len, pad_to_max_length=True)
    (q_ids, q_mask) = (torch.LongTensor(q_toks['input_ids']).to(device), torch.LongTensor(q_toks['attention_mask']).to(device))
    a_toks = tokenizer.batch_encode_plus(a_ls, max_length=min(max_len, max_a_len), pad_to_max_length=True)
    (a_ids, a_mask) = (torch.LongTensor(a_toks['input_ids']).to(device), torch.LongTensor(a_toks['attention_mask']).to(device))
    lm_labels = a_ids[:, 1:].contiguous().clone()
    lm_labels[a_mask[:, 1:].contiguous() == 0] = -100
    model_inputs = {'input_ids': q_ids, 'attention_mask': q_mask, 'decoder_input_ids': a_ids[:, :-1].contiguous(), 'lm_labels': lm_labels}
    return model_inputs

def train_qa_s2s_epoch(model, dataset, tokenizer, optimizer, scheduler, args, e=0, curriculum=False):
    model.train()
    if curriculum:
        train_sampler = SequentialSampler(dataset)
    else:
        train_sampler = RandomSampler(dataset)
    model_collate_fn = functools.partial(make_qa_s2s_batch, tokenizer=tokenizer, max_len=args.max_length, device='cuda:0')
    data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn)
    epoch_iterator = tqdm(data_loader, desc='Iteration', disable=True)
    loc_steps = 0
    loc_loss = 0.0
    st_time = time()
    for (step, batch_inputs) in enumerate(epoch_iterator):
        pre_loss = model(**batch_inputs)[0]
        loss = pre_loss.sum() / pre_loss.shape[0]
        loss.backward()
        if step % args.backward_freq == 0:
            optimizer.step()
            scheduler.step()
            model.zero_grad()
        loc_loss += loss.item()
        loc_steps += 1
        if step % args.print_freq == 0 or step == 1:
            print('{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}'.format(e, step, len(dataset) // args.batch_size, loc_loss / loc_steps, time() - st_time))
            loc_loss = 0
            loc_steps = 0

def eval_qa_s2s_epoch(model, dataset, tokenizer, args):
    model.eval()
    train_sampler = SequentialSampler(dataset)
    model_collate_fn = functools.partial(make_qa_s2s_batch, tokenizer=tokenizer, max_len=args.max_length, device='cuda:0')
    data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn)
    epoch_iterator = tqdm(data_loader, desc='Iteration', disable=True)
    loc_steps = 0
    loc_loss = 0.0
    st_time = time()
    with torch.no_grad():
        for (step, batch_inputs) in enumerate(epoch_iterator):
            pre_loss = model(**batch_inputs)[0]
            loss = pre_loss.sum() / pre_loss.shape[0]
            loc_loss += loss.item()
            loc_steps += 1
            if step % args.print_freq == 0:
                print('{:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}'.format(step, len(dataset) // args.batch_size, loc_loss / loc_steps, time() - st_time))
    print('Total \t L: {:.3f} \t -- {:.3f}'.format(loc_loss / loc_steps, time() - st_time))

def train_qa_s2s(qa_s2s_model, qa_s2s_tokenizer, s2s_train_dset, s2s_valid_dset, s2s_args):
    s2s_optimizer = AdamW(qa_s2s_model.parameters(), lr=s2s_args.learning_rate, eps=1e-08)
    s2s_scheduler = get_linear_schedule_with_warmup(s2s_optimizer, num_warmup_steps=400, num_training_steps=(s2s_args.num_epochs + 1) * math.ceil(len(s2s_train_dset) / s2s_args.batch_size))
    for e in range(s2s_args.num_epochs):
        train_qa_s2s_epoch(qa_s2s_model, s2s_train_dset, qa_s2s_tokenizer, s2s_optimizer, s2s_scheduler, s2s_args, e, curriculum=e == 0)
        m_save_dict = {'model': qa_s2s_model.state_dict(), 'optimizer': s2s_optimizer.state_dict(), 'scheduler': s2s_scheduler.state_dict()}
        print('Saving model {}'.format(s2s_args.model_save_name))
        eval_qa_s2s_epoch(qa_s2s_model, s2s_valid_dset, qa_s2s_tokenizer, s2s_args)
        torch.save(m_save_dict, '{}_{}.pth'.format(s2s_args.model_save_name, e))

def qa_s2s_generate(question_doc, qa_s2s_model, qa_s2s_tokenizer, num_answers=1, num_beams=None, min_len=64, max_len=256, do_sample=False, temp=1.0, top_p=None, top_k=None, max_input_length=512, device='cuda:0'):
    model_inputs = make_qa_s2s_batch([(question_doc, 'A')], qa_s2s_tokenizer, max_input_length, device=device)
    n_beams = num_answers if num_beams is None else max(num_beams, num_answers)
    generated_ids = qa_s2s_model.generate(input_ids=model_inputs['input_ids'], attention_mask=model_inputs['attention_mask'], min_length=min_len, max_length=max_len, do_sample=do_sample, early_stopping=True, num_beams=1 if do_sample else n_beams, temperature=temp, top_k=top_k, top_p=top_p, eos_token_id=qa_s2s_tokenizer.eos_token_id, no_repeat_ngram_size=3, num_return_sequences=num_answers, decoder_start_token_id=qa_s2s_tokenizer.bos_token_id)
    return [qa_s2s_tokenizer.decode(ans_ids, skip_special_tokens=True).strip() for ans_ids in generated_ids]

def embed_passages_for_retrieval(passages, tokenizer, qa_embedder, max_length=128, device='cuda:0'):
    a_toks = tokenizer.batch_encode_plus(passages, max_length=max_length, pad_to_max_length=True)
    (a_ids, a_mask) = (torch.LongTensor(a_toks['input_ids']).to(device), torch.LongTensor(a_toks['attention_mask']).to(device))
    with torch.no_grad():
        a_reps = qa_embedder.embed_answers(a_ids, a_mask).cpu().type(torch.float)
    return a_reps.numpy()

def embed_questions_for_retrieval(q_ls, tokenizer, qa_embedder, device='cuda:0'):
    q_toks = tokenizer.batch_encode_plus(q_ls, max_length=128, pad_to_max_length=True)
    (q_ids, q_mask) = (torch.LongTensor(q_toks['input_ids']).to(device), torch.LongTensor(q_toks['attention_mask']).to(device))
    with torch.no_grad():
        q_reps = qa_embedder.embed_questions(q_ids, q_mask).cpu().type(torch.float)
    return q_reps.numpy()

def make_qa_dense_index(qa_embedder, tokenizer, passages_dset, batch_size=512, max_length=128, index_name='kilt_passages_reps.dat', dtype='float32', device='cuda:0'):
    st_time = time()
    fp = np.memmap(index_name, dtype=dtype, mode='w+', shape=(passages_dset.num_rows, 128))
    n_batches = math.ceil(passages_dset.num_rows / batch_size)
    for i in range(n_batches):
        passages = [p for p in passages_dset[i * batch_size:(i + 1) * batch_size]['passage_text']]
        reps = embed_passages_for_retrieval(passages, tokenizer, qa_embedder, max_length, device)
        fp[i * batch_size:(i + 1) * batch_size] = reps
        if i % 50 == 0:
            print(i, time() - st_time)

def evaluate_retriever(qa_list, retriever_func, scoring_func, n_ret=10, verbose=False):
    total_retriever_time = 0.0
    total_retriever_score = 0.0
    st_time = time()
    for (i, (question, answer)) in enumerate(qa_list):
        r_time = time()
        retrieved_passages = retriever_func(question, n_ret)
        total_retriever_time += time() - r_time
        total_retriever_score += scoring_func(retrieved_passages, answer)
        if verbose and ((i + 1) % 500 == 0 or i <= 1):
            print('{:03d}: S-{:.4f} T-{:.4f} | {:.2f}'.format(i + 1, total_retriever_score / (i + 1), total_retriever_time / (i + 1), time() - st_time))
    return {'idf_recall': total_retriever_score / (i + 1), 'retrieval_time': total_retriever_time / (i + 1)}

def query_qa_dense_index(question, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10, min_length=20, device='cuda:0'):
    q_rep = embed_questions_for_retrieval([question], tokenizer, qa_embedder, device=device)
    (D, I) = wiki_index.search(q_rep, 2 * n_results)
    res_passages = [wiki_passages[int(i)] for i in I[0]]
    support_doc = '<P> ' + ' <P> '.join([p['passage_text'] for p in res_passages])
    res_list = [dict([(k, p[k]) for k in wiki_passages.column_names]) for p in res_passages]
    res_list = [res for res in res_list if len(res['passage_text'].split()) > min_length][:n_results]
    for (r, sc) in zip(res_list, D[0]):
        r['score'] = float(sc)
    return (support_doc, res_list)

def batch_query_qa_dense_index(questions, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10):
    q_rep = embed_questions_for_retrieval(questions, tokenizer, qa_embedder)
    (D, I) = wiki_index.search(q_rep, n_results)
    res_passages_lst = [[wiki_passages[int(i)] for i in i_lst] for i_lst in I]
    support_doc_lst = ['<P> ' + ' <P> '.join([p['passage_text'] for p in res_passages]) for res_passages in res_passages_lst]
    all_res_lists = []
    for (res_passages, dl) in zip(res_passages_lst, D):
        res_list = [dict([(k, p[k]) for k in wiki_passages.column_names]) for p in res_passages]
        for (r, sc) in zip(res_list, dl):
            r['score'] = float(sc)
        all_res_lists += [res_list[:]]
    return (support_doc_lst, all_res_lists)

def query_qa_dense_index_nn(passage, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10, min_length=20):
    a_rep = embed_passages_for_retrieval([passage], tokenizer, qa_embedder)
    (D, I) = wiki_index.search(a_rep, 2 * n_results)
    res_passages = [wiki_passages[int(i)] for i in I[0]]
    support_doc = '<P> ' + ' <P> '.join([p['passage_text'] for p in res_passages])
    res_list = [dict([(k, p[k]) for k in wiki_passages.column_names]) for p in res_passages]
    res_list = [res for res in res_list if len(res['passage_text'].split()) > min_length][:n_results]
    for (r, sc, i) in zip(res_list, D[0], I[0]):
        r['passage_id'] = int(i)
        r['score'] = float(sc)
    return (support_doc, res_list)

def batch_query_qa_dense_index_nn(passages, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10):
    a_reps = embed_passages_for_retrieval(passages, tokenizer, qa_embedder)
    (D, I) = wiki_index.search(a_reps, n_results)
    res_passages_lst = [[wiki_passages[int(i)] for i in i_lst] for i_lst in I]
    support_doc_lst = ['<P> ' + ' <P> '.join([p['passage_text'] for p in res_passages]) for res_passages in res_passages_lst]
    all_res_lists = []
    for (res_passages, dl, il) in zip(res_passages_lst, D, I):
        res_list = [dict([(k, p[k]) for k in wiki_passages.column_names]) for p in res_passages]
        for (r, sc, i) in zip(res_list, dl, il):
            r['passage_id'] = int(i)
            r['score'] = float(sc)
        all_res_lists += [res_list[:]]
    return (support_doc_lst, all_res_lists)

# File: notebooks-main/sagemaker/17_custom_inference_script/code/inference.py
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F

def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0]
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-09)

def model_fn(model_dir):
    tokenizer = AutoTokenizer.from_pretrained(model_dir)
    model = AutoModel.from_pretrained(model_dir)
    return (model, tokenizer)

def predict_fn(data, model_and_tokenizer):
    (model, tokenizer) = model_and_tokenizer
    sentences = data.pop('inputs', data)
    encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
    with torch.no_grad():
        model_output = model(**encoded_input)
    sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
    sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
    return {'vectors': sentence_embeddings}

# File: notebooks-main/sagemaker/18_inferentia_inference/code/inference.py
import os
from transformers import AutoConfig, AutoTokenizer
import torch
import torch.neuron
os.environ['NEURON_RT_NUM_CORES'] = '1'
AWS_NEURON_TRACED_WEIGHTS_NAME = 'neuron_model.pt'

def model_fn(model_dir):
    tokenizer = AutoTokenizer.from_pretrained(model_dir)
    model = torch.jit.load(os.path.join(model_dir, AWS_NEURON_TRACED_WEIGHTS_NAME))
    model_config = AutoConfig.from_pretrained(model_dir)
    return (model, tokenizer, model_config)

def predict_fn(data, model_tokenizer_model_config):
    (model, tokenizer, model_config) = model_tokenizer_model_config
    inputs = data.pop('inputs', data)
    embeddings = tokenizer(inputs, return_tensors='pt', max_length=model_config.traced_sequence_length, padding='max_length', truncation=True)
    neuron_inputs = tuple(embeddings.values())
    with torch.no_grad():
        predictions = model(*neuron_inputs)[0]
        scores = torch.nn.Softmax(dim=1)(predictions)
    return [{'label': model_config.id2label[item.argmax().item()], 'score': item.max().item()} for item in scores]

# File: notebooks-main/sagemaker/22_accelerate_sagemaker_examples/src/seq2seq/run_seq2seq_no_trainer.py
""""""
import argparse
import json
import logging
import math
import os
import random
from pathlib import Path
from time import time
import datasets
import nltk
import numpy as np
import torch
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DummyOptim, DummyScheduler, set_seed
from filelock import FileLock
from huggingface_hub import Repository
from transformers import CONFIG_MAPPING, MODEL_MAPPING, AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, DataCollatorForSeq2Seq, SchedulerType, get_scheduler
from transformers.utils import get_full_repo_name, is_offline_mode
from transformers.utils.versions import require_version
logger = get_logger(__name__)
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/summarization/requirements.txt')
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple((conf.model_type for conf in MODEL_CONFIG_CLASSES))
try:
    nltk.data.find('tokenizers/punkt')
except (LookupError, OSError):
    if is_offline_mode():
        raise LookupError('Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files')
    with FileLock('.lock') as lock:
        nltk.download('punkt', quiet=True)

def parse_args():
    parser = argparse.ArgumentParser(description='Finetune a transformers model on a summarization task')
    parser.add_argument('--dataset_name', type=str, default=None, help='The name of the dataset to use (via the datasets library).')
    parser.add_argument('--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).')
    parser.add_argument('--train_file', type=str, default=None, help='A csv or a json file containing the training data.')
    parser.add_argument('--validation_file', type=str, default=None, help='A csv or a json file containing the validation data.')
    parser.add_argument('--ignore_pad_token_for_loss', type=bool, default=True, help='Whether to ignore the tokens corresponding to padded labels in the loss computation or not.')
    parser.add_argument('--max_source_length', type=int, default=1024, help='The maximum total input sequence length after tokenization.Sequences longer than this will be truncated, sequences shorter will be padded.')
    parser.add_argument('--source_prefix', type=str, default=None, help='A prefix to add before every source text (useful for T5 models).')
    parser.add_argument('--preprocessing_num_workers', type=int, default=None, help='The number of processes to use for the preprocessing.')
    parser.add_argument('--overwrite_cache', type=bool, default=None, help='Overwrite the cached training and evaluation sets')
    parser.add_argument('--max_target_length', type=int, default=128, help='The maximum total sequence length for target text after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.during ``evaluate`` and ``predict``.')
    parser.add_argument('--val_max_target_length', type=int, default=None, help='The maximum total sequence length for validation target text after tokenization.Sequences longer than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`.This argument is also used to override the ``max_length`` param of ``model.generate``, which is used during ``evaluate`` and ``predict``.')
    parser.add_argument('--val_min_target_length', type=int, default=10, help='The minimum total sequence length for validation target text after tokenization.Sequences longer than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`.This argument is also used to override the ``max_length`` param of ``model.generate``, which is used during ``evaluate`` and ``predict``.')
    parser.add_argument('--n_train', type=int, default=2000, help='Number of training examples to use. If None, all training examples will be used.')
    parser.add_argument('--n_val', type=int, default=500, help='Number of validation examples to use. If None, all validation examples will be used.')
    parser.add_argument('--n_val_batch_generations', type=int, default=5, help='Number of validation examples to use. If None, all validation examples will be used.')
    parser.add_argument('--max_length', type=int, default=128, help='The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded if `--pad_to_max_lengh` is passed.')
    parser.add_argument('--num_beams', type=int, default=None, help='Number of beams to use for evaluation. This argument will be passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.')
    parser.add_argument('--pad_to_max_length', type=bool, default=False, help='If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.')
    parser.add_argument('--model_name_or_path', type=str, help='Path to pretrained model or model identifier from huggingface.co/models.', required=False)
    parser.add_argument('--config_name', type=str, default=None, help='Pretrained config name or path if not the same as model_name')
    parser.add_argument('--tokenizer_name', type=str, default=None, help='Pretrained tokenizer name or path if not the same as model_name')
    parser.add_argument('--text_column', type=str, default=None, help='The name of the column in the datasets containing the full texts (for summarization).')
    parser.add_argument('--summary_column', type=str, default=None, help='The name of the column in the datasets containing the summaries (for summarization).')
    parser.add_argument('--use_slow_tokenizer', type=bool, default=False, help='If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).')
    parser.add_argument('--per_device_train_batch_size', type=int, default=8, help='Batch size (per device) for the training dataloader.')
    parser.add_argument('--per_device_eval_batch_size', type=int, default=8, help='Batch size (per device) for the evaluation dataloader.')
    parser.add_argument('--learning_rate', type=float, default=5e-05, help='Initial learning rate (after the potential warmup period) to use.')
    parser.add_argument('--weight_decay', type=float, default=0.0, help='Weight decay to use.')
    parser.add_argument('--num_train_epochs', type=int, default=3, help='Total number of training epochs to perform.')
    parser.add_argument('--max_train_steps', type=int, default=None, help='Total number of training steps to perform. If provided, overrides num_train_epochs.')
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help='Number of updates steps to accumulate before performing a backward/update pass.')
    parser.add_argument('--lr_scheduler_type', type=SchedulerType, default='linear', help='The scheduler type to use.', choices=['linear', 'cosine', 'cosine_with_restarts', 'polynomial', 'constant', 'constant_with_warmup'])
    parser.add_argument('--num_warmup_steps', type=int, default=0, help='Number of steps for the warmup in the lr scheduler.')
    parser.add_argument('--output_dir', type=str, default=None, help='Where to store the final model.')
    parser.add_argument('--seed', type=int, default=None, help='A seed for reproducible training.')
    parser.add_argument('--model_type', type=str, default=None, help='Model type to use if training from scratch.', choices=MODEL_TYPES)
    parser.add_argument('--push_to_hub', type=bool, default=False, help='Whether or not to push the model to the Hub.')
    parser.add_argument('--hub_model_id', type=str, help='The name of the repository to keep in sync with the local `output_dir`.')
    parser.add_argument('--hub_token', type=str, help='The token to use to push to the Model Hub.')
    parser.add_argument('--checkpointing_steps', type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.")
    parser.add_argument('--resume_from_checkpoint', type=str, default=None, help='If the training should continue from a checkpoint folder.')
    parser.add_argument('--load_best_model', type=bool, default=False, help='Whether to load the best model at the end of training')
    parser.add_argument('--logging_steps', type=int, default=None, help='log every n steps')
    parser.add_argument('--with_tracking', type=bool, default=False, help='Whether to enable experiment trackers for logging.')
    parser.add_argument('--report_to', type=str, default='all', help='The integration to report the results and logs to. Supported platforms are `"tensorboard"`, `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.Only applicable when `--with_tracking` is passed.')
    parser.add_argument('--report_name', type=str, default='chatbot_no_trainer', help='The name of the experiment tracking folder. Only applicable when `--with_tracking` is passed.')
    args = parser.parse_args()
    if args.dataset_name is None and args.train_file is None and (args.validation_file is None):
        raise ValueError('Need either a dataset name or a training/validation file.')
    else:
        if args.train_file is not None:
            extension = args.train_file.split('.')[-1]
            assert extension in ['csv', 'json'], '`train_file` should be a csv or a json file.'
        if args.validation_file is not None:
            extension = args.validation_file.split('.')[-1]
            assert extension in ['csv', 'json'], '`validation_file` should be a csv or a json file.'
    if args.push_to_hub:
        assert args.output_dir is not None, 'Need an `output_dir` to create a repo when `--push_to_hub` is passed.'
    return args

def checkpoint_model(checkpoint_folder, ckpt_id, model, epoch, last_global_step, **kwargs):
    checkpoint_state_dict = {'epoch': epoch, 'last_global_step': last_global_step}
    checkpoint_state_dict.update(kwargs)
    success = model.save_checkpoint(checkpoint_folder, ckpt_id, checkpoint_state_dict)
    status_msg = f'checkpointing: checkpoint_folder={checkpoint_folder}, ckpt_id={ckpt_id}'
    if success:
        logging.info(f'Success {status_msg}')
    else:
        logging.warning(f'Failure {status_msg}')
    return

def evaluate(args, model, metric, tokenizer, eval_dataloader, accelerator, max_length):
    accelerator.print('starting evaluation')
    count_printed = 0

    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [[label.strip()] for label in labels]
        return (preds, labels)
    model.eval()
    if args.val_max_target_length is None:
        args.val_max_target_length = args.max_target_length
    gen_kwargs = {'max_length': args.val_max_target_length if args is not None else max_length, 'num_beams': args.num_beams, 'min_length': args.val_min_target_length, 'length_penalty': False, 'no_repeat_ngram_size': 3, 'encoder_no_repeat_ngram_size': 3, 'repetition_penalty': 1.2}
    samples_seen = 0
    for (step, batch) in enumerate(eval_dataloader):
        with torch.no_grad():
            generated_tokens = accelerator.unwrap_model(model).generate(batch['input_ids'], attention_mask=batch['attention_mask'], **gen_kwargs)
            generated_tokens = accelerator.pad_across_processes(generated_tokens, dim=1, pad_index=tokenizer.pad_token_id)
            labels = batch['labels']
            if not args.pad_to_max_length:
                labels = accelerator.pad_across_processes(batch['labels'], dim=1, pad_index=tokenizer.pad_token_id)
            (generated_tokens, labels) = accelerator.gather((generated_tokens, labels))
            generated_tokens = generated_tokens.cpu().numpy()
            labels = labels.cpu().numpy()
            if args.ignore_pad_token_for_loss:
                labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
            decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
            decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
            if count_printed < args.n_val_batch_generations:
                logger.info('printing few sample generations and corresponding labels from eval set')
                logger.info('prompt | generated | label')
                decoded_prompts = tokenizer.batch_decode(batch['input_ids'], skip_special_tokens=False)
                for (prompt, generated_response, response) in zip(decoded_prompts, decoded_preds, decoded_labels):
                    cleaned_prompt = prompt.replace('<pad>', '').strip()
                    logger.info(f'{cleaned_prompt} | {generated_response} | {response}')
                count_printed += 1
            (decoded_preds, decoded_labels) = postprocess_text(decoded_preds, decoded_labels)
            if accelerator.num_processes > 1:
                if step == len(eval_dataloader) - 1:
                    decoded_preds = decoded_preds[:len(eval_dataloader.dataset) - samples_seen]
                    decoded_labels = decoded_labels[:len(eval_dataloader.dataset) - samples_seen]
                else:
                    samples_seen += len(decoded_labels)
            metric.add_batch(predictions=decoded_preds, references=decoded_labels)
    result = metric.compute()
    logger.info({'bleu': result['score']})
    accelerator.print('evaluation completed')
    return result['score']

def load_training_checkpoint(model, load_dir, tag=None, **kwargs):
    (_, checkpoint_state_dict) = model.load_checkpoint(load_dir, tag=tag, **kwargs)
    epoch = checkpoint_state_dict['epoch']
    last_global_step = checkpoint_state_dict['last_global_step']
    del checkpoint_state_dict
    return (epoch, last_global_step)

def main():
    args = parse_args()
    accelerator = Accelerator(log_with=args.report_to, logging_dir=args.output_dir) if args.with_tracking else Accelerator()
    if args.source_prefix is None and args.model_name_or_path in ['t5-small', 't5-base', 't5-large', 't5-3b', 't5-11b']:
        logger.warning("You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with `--source_prefix 'summarize: ' `")
    logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO)
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
    if args.seed is not None:
        set_seed(args.seed)
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)
            with open(os.path.join(args.output_dir, '.gitignore'), 'w+') as gitignore:
                if 'step_*' not in gitignore:
                    gitignore.write('step_*\n')
                if 'epoch_*' not in gitignore:
                    gitignore.write('epoch_*\n')
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()
    if args.dataset_name is not None:
        raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
        if args.n_train > 0:
            raw_datasets['train'] = datasets.Dataset.from_dict(raw_datasets['train'][:args.n_train])
        if args.n_val > 0:
            raw_datasets['validation'] = datasets.Dataset.from_dict(raw_datasets['validation'][:args.n_val])
    else:
        data_files = {}
        if args.train_file is not None:
            data_files['train'] = args.train_file
        if args.validation_file is not None:
            data_files['validation'] = args.validation_file
        extension = args.train_file.split('.')[-1]
        raw_datasets = load_dataset(extension, data_files=data_files)
    if args.config_name:
        config = AutoConfig.from_pretrained(args.config_name)
    elif args.model_name_or_path:
        config = AutoConfig.from_pretrained(args.model_name_or_path)
    else:
        config = CONFIG_MAPPING[args.model_type]()
        logger.warning('You are instantiating a new config instance from scratch.')
    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer)
    elif args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
    else:
        raise ValueError('You are instantiating a new tokenizer from scratch. This is not supported by this script.You can do it from another script, save it, and load it from here, using --tokenizer_name.')
    if args.model_name_or_path:
        model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
    else:
        logger.info('Training new model from scratch')
        model = AutoModelForSeq2SeqLM.from_config(config)
    model.resize_token_embeddings(len(tokenizer))
    if model.config.decoder_start_token_id is None:
        raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined')
    prefix = args.source_prefix if args.source_prefix is not None else ''
    column_names = raw_datasets['train'].column_names
    dataset_columns = column_names
    if args.text_column is None:
        text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
    else:
        text_column = args.text_column
        if text_column not in column_names:
            raise ValueError(f"--text_column' value '{args.text_column}' needs to be one of: {', '.join(column_names)}")
    if args.summary_column is None:
        summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        summary_column = args.summary_column
        if summary_column not in column_names:
            raise ValueError(f"--summary_column' value '{args.summary_column}' needs to be one of: {', '.join(column_names)}")
    max_target_length = args.max_target_length
    padding = 'max_length' if args.pad_to_max_length else False

    def preprocess_function(examples):
        inputs = examples[text_column]
        targets = examples[summary_column]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs, max_length=args.max_source_length, padding=padding, truncation=True)
        if 't5' in args.model_name_or_path:
            with tokenizer.as_target_tokenizer():
                labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)
        else:
            labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)
        if padding == 'max_length' and args.ignore_pad_token_for_loss:
            labels['input_ids'] = [[l if l != tokenizer.pad_token_id else -100 for l in label] for label in labels['input_ids']]
        model_inputs['labels'] = labels['input_ids']
        return model_inputs
    with accelerator.main_process_first():
        processed_datasets = raw_datasets.map(preprocess_function, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on dataset')
    train_dataset = processed_datasets['train']
    eval_dataset = processed_datasets['validation']
    for index in random.sample(range(len(train_dataset)), 1):
        logger.info(f'Sample {index} of the training set: {train_dataset[index]}.')
    label_pad_token_id = -100 if args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    data_collator = DataCollatorForSeq2Seq(tokenizer, model=model, label_pad_token_id=label_pad_token_id, pad_to_multiple_of=8 if accelerator.use_fp16 else None)
    train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size)
    eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{'params': [p for (n, p) in model.named_parameters() if not any((nd in n for nd in no_decay))], 'weight_decay': args.weight_decay}, {'params': [p for (n, p) in model.named_parameters() if any((nd in n for nd in no_decay))], 'weight_decay': 0.0}]
    optimizer_cls = torch.optim.Adam if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim
    optimizer = optimizer_cls(optimizer_grouped_parameters, lr=args.learning_rate)
    if accelerator.state.deepspeed_plugin is not None:
        args.gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config['gradient_accumulation_steps']
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
    if accelerator.state.deepspeed_plugin is None or 'scheduler' not in accelerator.state.deepspeed_plugin.deepspeed_config:
        lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps)
    else:
        lr_scheduler = DummyScheduler(optimizer, total_num_steps=args.max_train_steps, warmup_num_steps=args.num_warmup_steps)
    (model, optimizer, train_dataloader, eval_dataloader, lr_scheduler) = accelerator.prepare(model, optimizer, train_dataloader, eval_dataloader, lr_scheduler)
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    if hasattr(args.checkpointing_steps, 'isdigit'):
        checkpointing_steps = args.checkpointing_steps
        if args.checkpointing_steps.isdigit():
            checkpointing_steps = int(args.checkpointing_steps)
    else:
        checkpointing_steps = None
    if args.with_tracking:
        if accelerator.is_main_process:
            experiment_config = vars(args)
            experiment_config['lr_scheduler_type'] = experiment_config['lr_scheduler_type'].value
            accelerator.init_trackers(args.report_name, experiment_config)
    metric = load_metric('sacrebleu')
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
    logger.info('***** Running training *****')
    logger.info(f'  Num examples = {len(train_dataset)}')
    logger.info(f'  Num Epochs = {args.num_train_epochs}')
    logger.info(f'  Instantaneous batch size per device = {args.per_device_train_batch_size}')
    logger.info(f'  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}')
    logger.info(f'  Gradient Accumulation steps = {args.gradient_accumulation_steps}')
    logger.info(f'  Total optimization steps = {args.max_train_steps}')
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
    completed_steps = 0
    starting_epoch = 0
    best_metric = None
    best_metric_checkpoint = None
    if args.resume_from_checkpoint:
        (_, last_global_step) = load_training_checkpoint(model, args.resume_from_checkpoint, **{'load_optimizer_states': True, 'load_lr_scheduler_states': True})
        accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}')
        resume_step = last_global_step
        starting_epoch = resume_step // len(train_dataloader)
        resume_step -= starting_epoch * len(train_dataloader)
    for epoch in range(starting_epoch, args.num_train_epochs):
        start_time = time()
        model.train()
        if args.with_tracking:
            total_loss = 0
        for (step, batch) in enumerate(train_dataloader):
            if args.resume_from_checkpoint and epoch == starting_epoch:
                if resume_step is not None and step < resume_step:
                    completed_steps += 1
                    continue
            decoder_input_ids = batch['labels'].new_zeros(batch['labels'].shape)
            decoder_input_ids[..., 1:] = batch['labels'][..., :-1].clone()
            decoder_input_ids[..., 0] = 0
            decoder_input_ids.masked_fill_(decoder_input_ids == -100, 0)
            batch['decoder_input_ids'] = decoder_input_ids
            outputs = model(**batch)
            loss = outputs.loss
            if args.with_tracking:
                total_loss += loss.detach().float()
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1
            if isinstance(args.logging_steps, int):
                if completed_steps % args.logging_steps == 0:
                    steps_this_epoch = completed_steps % len(train_dataloader)
                    train_loss = total_loss.item() / steps_this_epoch
                    train_perplexity = math.exp(train_loss)
                    accelerator.log({'train_loss': train_loss, 'train_perplexity': train_perplexity, 'epoch': epoch, 'step': completed_steps, 'steps_this_epoch': steps_this_epoch}, step=completed_steps)
                    logger.info(f'Epoch: {epoch}, Step: {completed_steps}, Loss: {train_loss}, Perplexity: {train_perplexity}')
            if isinstance(checkpointing_steps, int):
                if completed_steps % checkpointing_steps == 0:
                    if accelerator.state.deepspeed_plugin is not None:
                        checkpoint_model(args.output_dir, epoch, model, epoch, completed_steps)
                    else:
                        accelerator.wait_for_everyone()
                        if accelerator.is_main_process:
                            ckpt_path = os.path.join(args.output_dir, str(epoch))
                            os.makedirs(ckpt_path, exist_ok=True)
                            accelerator.save(accelerator.get_state_dict(model), os.path.join(ckpt_path, 'model.pt'))
            if completed_steps >= args.max_train_steps:
                break
        end_time = time()
        logger.info(f'Epoch {epoch} training took {end_time - start_time} seconds')
        if accelerator.state.deepspeed_plugin is not None:
            checkpoint_model(args.output_dir, epoch, model, epoch, completed_steps)
        else:
            accelerator.wait_for_everyone()
            if accelerator.is_main_process:
                ckpt_path = os.path.join(args.output_dir, str(epoch))
                os.makedirs(ckpt_path, exist_ok=True)
                accelerator.save(accelerator.get_state_dict(model), os.path.join(ckpt_path, 'model.pt'))
        start_time = time()
        bleu_score = evaluate(args, model, metric, tokenizer, eval_dataloader, accelerator, config.max_length)
        end_time = time()
        logger.info(f'Epoch {epoch} evaluation took {end_time - start_time} seconds')
        result = {}
        if args.with_tracking:
            result['bleu_score'] = bleu_score
            result['train_loss'] = total_loss.item() / len(train_dataloader)
            result['train_perplexity'] = math.exp(result['train_loss'])
            result['epoch'] = epoch
            result['step'] = completed_steps
            accelerator.log(result, step=completed_steps)
        if (best_metric is None or best_metric < bleu_score) and args.load_best_model:
            best_metric = bleu_score
            best_metric_checkpoint = os.path.join(args.output_dir, str(epoch))
            accelerator.print(f'New best metric: {best_metric} at epoch {epoch}')
            accelerator.print(f'best_metric_checkpoint: {best_metric_checkpoint}')
    if args.load_best_model:
        if accelerator.state.deepspeed_plugin is not None:
            (_, last_global_step) = load_training_checkpoint(model, '/'.join(best_metric_checkpoint.split('/')[:-1]), tag=best_metric_checkpoint.split('/')[-1], **{'load_optimizer_states': True, 'load_lr_scheduler_states': True})
        else:
            map_location = {'cuda:0': 'cuda:{}'.format(accelerator.local_process_index)}
            model.load_state_dict(torch.load(os.path.join(best_metric_checkpoint, 'model.pt'), map_location=map_location))
        bleu_score = evaluate(args, model, metric, tokenizer, eval_dataloader, accelerator, config.max_length)
        logger.info(f'Best model metrics: bleu_score: {bleu_score}')
        if bleu_score != best_metric:
            raise AssertionError(f'Best metric {best_metric} does not match the metric {bleu_score} of the loaded best model.')
    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save, state_dict=accelerator.get_state_dict(model))
        if accelerator.is_main_process:
            tokenizer.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message='End of training', auto_lfs_prune=True)
        with open(os.path.join(args.output_dir, 'all_results.json'), 'w') as f:
            json.dump({'eval_bleu': bleu_score}, f)
if __name__ == '__main__':
    main()

# File: notebooks-main/sagemaker/22_accelerate_sagemaker_examples/src/text-classification/train_using_s3_data.py
import argparse
import os
import torch
from torch.optim import AdamW
from torch.utils.data import DataLoader
import evaluate
from accelerate import Accelerator, DistributedType
from datasets import load_from_disk
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
MAX_GPU_BATCH_SIZE = 16
EVAL_BATCH_SIZE = 32

def training_function(config, args):
    if args.with_tracking:
        accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision, log_with='all', logging_dir=args.logging_dir)
    else:
        accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision)
    if hasattr(args.checkpointing_steps, 'isdigit'):
        if args.checkpointing_steps == 'epoch':
            checkpointing_steps = args.checkpointing_steps
        elif args.checkpointing_steps.isdigit():
            checkpointing_steps = int(args.checkpointing_steps)
        else:
            raise ValueError(f'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.')
    else:
        checkpointing_steps = None
    lr = config['lr']
    num_epochs = int(config['num_epochs'])
    seed = int(config['seed'])
    batch_size = int(config['batch_size'])
    if args.with_tracking:
        run = os.path.split(__file__)[-1].split('.')[0]
        accelerator.init_trackers(run, config)
    tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
    metric = evaluate.load('glue', 'mrpc')
    gradient_accumulation_steps = 1
    if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
        gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE
        batch_size = MAX_GPU_BATCH_SIZE

    def collate_fn(examples):
        if accelerator.distributed_type == DistributedType.TPU:
            return tokenizer.pad(examples, padding='max_length', max_length=128, return_tensors='pt')
        return tokenizer.pad(examples, padding='longest', return_tensors='pt')
    train_dataset = load_from_disk(args.training_dir)
    validation_dataset = load_from_disk(args.validation_dir)
    accelerator.print(f' loaded train_dataset length is: {len(train_dataset)}')
    accelerator.print(f' loaded test_dataset length is: {len(validation_dataset)}')
    train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=batch_size)
    eval_dataloader = DataLoader(validation_dataset, shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE)
    set_seed(seed)
    model = AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=True)
    model = model.to(accelerator.device)
    optimizer = AdamW(params=model.parameters(), lr=lr)
    lr_scheduler = get_linear_schedule_with_warmup(optimizer=optimizer, num_warmup_steps=100, num_training_steps=len(train_dataloader) * num_epochs // gradient_accumulation_steps)
    (model, optimizer, train_dataloader, eval_dataloader, lr_scheduler) = accelerator.prepare(model, optimizer, train_dataloader, eval_dataloader, lr_scheduler)
    overall_step = 0
    starting_epoch = 0
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != '':
            accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}')
            accelerator.load_state(args.resume_from_checkpoint)
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
            dirs.sort(key=os.path.getctime)
            path = dirs[-1]
        training_difference = os.path.splitext(path)[0]
        if 'epoch' in training_difference:
            starting_epoch = int(training_difference.replace('epoch_', '')) + 1
            resume_step = None
        else:
            resume_step = int(training_difference.replace('step_', ''))
            starting_epoch = resume_step // len(train_dataloader)
            resume_step -= starting_epoch * len(train_dataloader)
    for epoch in range(starting_epoch, num_epochs):
        model.train()
        if args.with_tracking:
            total_loss = 0
        for (step, batch) in enumerate(train_dataloader):
            if args.resume_from_checkpoint and epoch == starting_epoch:
                if resume_step is not None and step < resume_step:
                    overall_step += 1
                    continue
            batch.to(accelerator.device)
            outputs = model(**batch)
            loss = outputs.loss
            loss = loss / gradient_accumulation_steps
            if args.with_tracking:
                total_loss += loss.detach().float()
            accelerator.backward(loss)
            if step % gradient_accumulation_steps == 0:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
            overall_step += 1
            if isinstance(checkpointing_steps, int):
                output_dir = f'step_{overall_step}'
                if overall_step % checkpointing_steps == 0:
                    if args.output_dir is not None:
                        output_dir = os.path.join(args.output_dir, output_dir)
                    accelerator.save_state(output_dir)
        model.eval()
        for (step, batch) in enumerate(eval_dataloader):
            batch.to(accelerator.device)
            with torch.no_grad():
                outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1)
            (predictions, references) = accelerator.gather_for_metrics((predictions, batch['labels']))
            metric.add_batch(predictions=predictions, references=references)
        eval_metric = metric.compute()
        accelerator.print(f'epoch {epoch}:', eval_metric)
        if args.with_tracking:
            accelerator.log({'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(train_dataloader), 'epoch': epoch}, step=epoch)
        if checkpointing_steps == 'epoch':
            output_dir = f'epoch_{epoch}'
            if args.output_dir is not None:
                output_dir = os.path.join(args.output_dir, output_dir)
            accelerator.save_state(output_dir)
    accelerator.save(accelerator.get_state_dict(model), os.path.join(args.output_dir, 'model.pt'))
    if args.with_tracking:
        accelerator.end_training()

def main():
    parser = argparse.ArgumentParser(description='Simple example of training script.')
    parser.add_argument('--mixed_precision', type=str, default='no', choices=['no', 'fp16', 'bf16'], help='Whether to use mixed precision. Choosebetween fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.and an Nvidia Ampere GPU.')
    parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.')
    parser.add_argument('--checkpointing_steps', type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.")
    parser.add_argument('--resume_from_checkpoint', type=str, default=None, help='If the training should continue from a checkpoint folder.')
    parser.add_argument('--with_tracking', action='store_true', help='Whether to load in all available experiment trackers from the environment and use them for logging.')
    parser.add_argument('--logging_dir', type=str, default=os.path.join(os.environ['SM_OUTPUT_DATA_DIR'], 'logs'), help='Location on where to store experiment tracking logs`')
    parser.add_argument('--output_dir', type=str, default=os.environ['SM_MODEL_DIR'])
    parser.add_argument('--training_dir', type=str, default=os.environ['SM_CHANNEL_TRAIN'])
    parser.add_argument('--validation_dir', type=str, default=os.environ['SM_CHANNEL_VALIDATION'])
    args = parser.parse_args()
    config = {'lr': 2e-05, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
    training_function(config, args)
if __name__ == '__main__':
    main()

# File: notebooks-main/sagemaker/23_stable_diffusion_inference/code/inference.py
import base64
import torch
from io import BytesIO
from diffusers import StableDiffusionPipeline

def model_fn(model_dir):
    pipe = StableDiffusionPipeline.from_pretrained(model_dir, torch_dtype=torch.float16)
    pipe = pipe.to('cuda')
    return pipe

def predict_fn(data, pipe):
    prompt = data.pop('inputs', data)
    num_inference_steps = data.pop('num_inference_steps', 50)
    guidance_scale = data.pop('guidance_scale', 7.5)
    num_images_per_prompt = data.pop('num_images_per_prompt', 4)
    generated_images = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=num_images_per_prompt)['images']
    encoded_images = []
    for image in generated_images:
        buffered = BytesIO()
        image.save(buffered, format='JPEG')
        encoded_images.append(base64.b64encode(buffered.getvalue()).decode())
    return {'generated_images': encoded_images}