File size: 64,971 Bytes
b1d4de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
# File: optimum-nvidia-main/src/optimum/commands/env.py
import platform
import subprocess
import huggingface_hub
from tensorrt import __version__ as trt_version
from tensorrt_llm import __version__ as trtllm_version
from transformers import __version__ as transformers_version
from transformers.utils import is_torch_available
from optimum.commands import BaseOptimumCLICommand, CommandInfo
from optimum.version import __version__ as optimum_version

class EnvironmentCommand(BaseOptimumCLICommand):
    COMMAND = CommandInfo(name='env', help='Get information about the environment used.')

    @staticmethod
    def print_apt_pkgs():
        apt = subprocess.Popen(['apt', 'list', '--installed'], stdout=subprocess.PIPE)
        grep = subprocess.Popen(['grep', 'cuda'], stdin=apt.stdout, stdout=subprocess.PIPE)
        pkgs_list = list(grep.stdout)
        for pkg in pkgs_list:
            print(pkg.decode('utf-8').split('\n')[0])

    def run(self):
        pt_version = 'not installed'
        if is_torch_available():
            import torch
            pt_version = torch.__version__
        platform_info = {'Platform': platform.platform(), 'Python version': platform.python_version()}
        info = {'`tensorrt` version': trt_version, '`tensorrt-llm` version': trtllm_version, '`optimum` version': optimum_version, '`transformers` version': transformers_version, '`huggingface_hub` version': huggingface_hub.__version__, '`torch` version': f'{pt_version}'}
        print('\nCopy-and-paste the text below in your GitHub issue:\n')
        print('\nPlatform:\n')
        print(self.format_dict(platform_info))
        print('\nPython packages:\n')
        print(self.format_dict(info))
        print('\nCUDA system packages:\n')
        self.print_apt_pkgs()

# File: optimum-nvidia-main/src/optimum/nvidia/compression/modelopt.py
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Iterable, Optional, Protocol, Union, runtime_checkable
import modelopt.torch.quantization as mtq
import modelopt.torch.sparsity as mts
import torch
from modelopt.torch.export import export_tensorrt_llm_checkpoint
from transformers.quantizers import HfQuantizer
from transformers.utils.quantization_config import QuantizationConfigMixin
from optimum.nvidia.compression import CompressionRecipe
if TYPE_CHECKING:
    from modelopt.torch.quantization import QuantizeConfig
    from transformers import PreTrainedModel as TransformersPreTrainedModel
    from optimum.nvidia.export import Workspace

@runtime_checkable
class IntoModelOptQuantizeConfig(Protocol):

    def into_modelopt_qconfig(self) -> 'QuantizeConfig':
        ...

class ModelOptConfig(QuantizationConfigMixin):

    def __init__(self, qconfig: Union['QuantizeConfig', 'IntoModelOptQuantizeConfig'], sparsity: Optional[Union[mts.mode.SparseGPTConfig, mts.mode.SparseMagnitudeConfig]]=None):
        self._qconfig = qconfig.into_modelopt_qconfig() if isinstance(qconfig, IntoModelOptQuantizeConfig) else qconfig
        self._sparsity = sparsity

    @property
    def quant_method(self):
        return self._qconfig.algorithm

    @property
    def qconfig(self) -> 'QuantizeConfig':
        return self._qconfig

    @property
    def sparsity(self) -> Optional[str]:
        return self._sparsity

class ModelOptRecipe(CompressionRecipe[ModelOptConfig], ABC):

    @property
    @abstractmethod
    def config(self) -> ModelOptConfig:
        raise NotImplementedError()

    @property
    @abstractmethod
    def dataset(self) -> Iterable:
        raise NotImplementedError()

class ModelOptQuantizer(HfQuantizer):

    def __init__(self, recipe: ModelOptRecipe):
        super().__init__(recipe.config)
        self._recipe = recipe

    def _looper(self, model: 'TransformersPreTrainedModel'):
        for sample in self._recipe.dataset:
            _ = model(**sample)

    def _process_model_before_weight_loading(self, model, **kwargs):
        return model

    def _process_model_after_weight_loading(self, model, **kwargs):
        if 'workspace' not in kwargs:
            raise KeyError('workspace not provided but required to generate quantized model representation')
        workspace: 'Workspace' = kwargs.pop('workspace')
        with torch.inference_mode():
            if (sconfig := self._recipe.config.sparsity):
                device = model.device
                model = mts.sparsify(model.cpu(), sconfig, {'data_loader': self._recipe.dataset, 'collect_func': lambda x: x})
                model = mts.export(model)
                model.to(device)
            qmodel = mtq.quantize(model, vars(self._recipe.config.qconfig), forward_loop=self._looper)
            export_tensorrt_llm_checkpoint(qmodel, decoder_type=model.config.model_type, dtype=model.dtype, export_dir=workspace.checkpoints_path, inference_tensor_parallel=1, inference_pipeline_parallel=1, use_nfs_workspace=False, naive_fp8_quantization=False)
        return qmodel

    @property
    def is_serializable(self):
        return True

    @property
    def is_trainable(self):
        return True

# File: optimum-nvidia-main/src/optimum/nvidia/errors.py
from typing import Optional
from optimum.nvidia.utils.nvml import SM_FP8_SUPPORTED

class OptimumNvidiaException(Exception):

    def __init__(self, msg: str, operation: Optional[str]=None):
        if operation:
            super().__init__(f'[{operation}] {msg}.')
        else:
            super().__init__(f'{msg}')

class UnsupportedModelException(OptimumNvidiaException):

    def __init__(self, model_type: str):
        super().__init__(f'Model of type {model_type} is not supported. Please open-up an issue at https://github.com/huggingface/optimum-nvidia/issues')

class UnsupportedHardwareFeature(OptimumNvidiaException):

    def __init__(self, msg, feature: str):
        super(msg)

    @classmethod
    def float8(cls) -> 'UnsupportedHardwareFeature':
        return Float8NotSupported()

class Float8NotSupported(UnsupportedHardwareFeature):

    def __init__(self):
        super().__init__(f'float8 is not supported on your device. Please use a device with compute capabilities {SM_FP8_SUPPORTED}', 'float8')

# File: optimum-nvidia-main/src/optimum/nvidia/export/cli.py
from typing import TYPE_CHECKING
if TYPE_CHECKING:
    from argparse import ArgumentParser

def common_trtllm_export_args(parser: 'ArgumentParser'):
    parser.add_argument('model', type=str, help='Model to export.')
    required_group = parser.add_argument_group('Required arguments')
    required_group.add_argument('--max-input-length', type=int, default=-1, help='Maximum sequence length, in number of tokens, the prompt can be. The maximum number of potential tokens generated will be <max-output-length> - <max-input-length>.')
    required_group.add_argument('--max-output-length', type=int, default=-1, help='Maximum sequence length, in number of tokens, the model supports.')
    optional_group = parser.add_argument_group('Optional arguments')
    optional_group.add_argument('-d', '--dtype', type=str, default='auto', help="Computational data type used for the model. Default to 'auto' matching model's data type.")
    optional_group.add_argument('--max-batch-size', type=int, default=1, help='Maximum number of concurrent requests the model can process. Default to 1.')
    optional_group.add_argument('--max-beams-width', type=int, default=1, help='Maximum number of sampling paths ("beam") to evaluate when decoding new a token. Default to 1.')
    optional_group.add_argument('-q', '--quantization', type=str, help='Path to a quantization recipe file.')
    optional_group.add_argument('--destination', type=str, default=None, help='Folder where the resulting exported engines will be stored. Default to Hugging Face Hub cache.')
    optional_group.add_argument('--push-to-hub', type=str, help='Repository to push generated engines to.')

# File: optimum-nvidia-main/src/optimum/nvidia/export/config.py
from dataclasses import dataclass
from logging import getLogger
from os import PathLike
from typing import TYPE_CHECKING, Optional, Union
from warnings import warn
from tensorrt_llm import BuildConfig
from tensorrt_llm import Mapping as ShardingInfo
from tensorrt_llm.bindings import QuantMode
from tensorrt_llm.plugin import PluginConfig
from tensorrt_llm.plugin.plugin import ContextFMHAType
from transformers import AutoConfig
from optimum.nvidia.lang import DataType
from optimum.utils import NormalizedConfig
if TYPE_CHECKING:
    from transformers import PretrainedConfig
INFER_NUM_LOCAL_GPUS = -1
LOGGER = getLogger()

@dataclass
class ExportConfig:
    dtype: str
    max_input_len: int
    max_output_len: int
    max_batch_size: int
    max_beam_width: int = 1
    max_num_tokens: int = -1
    enabled_chunked_context: int = False
    sharding: Optional[ShardingInfo] = None
    optimization_level: int = 3

    def __post_init__(self):
        if self.max_batch_size < 1:
            raise ValueError(f'max_batch_size should >= 1, got {self.max_batch_size}')

    @staticmethod
    def from_pretrained(model_id_or_path: Union[str, PathLike], max_batch_size: int=1) -> 'ExportConfig':
        return ExportConfig.from_config(AutoConfig.from_pretrained(model_id_or_path), max_batch_size)

    @staticmethod
    def from_config(config: Union[NormalizedConfig, 'PretrainedConfig'], max_batch_size: int=1) -> 'ExportConfig':
        if not isinstance(config, NormalizedConfig):
            config = NormalizedConfig(config)
        dtype = DataType.from_torch(config.torch_dtype).value
        max_input_len = config.max_position_embeddings
        max_output_len = config.max_position_embeddings
        econfig = ExportConfig(dtype=dtype, max_input_len=max_input_len, max_output_len=max_output_len, max_batch_size=max_batch_size)
        econfig.with_sharding()
        econfig.validate()
        return econfig

    def validate(self) -> 'ExportConfig':
        if self.optimization_level < 0:
            raise ValueError(f'optimization_level should be >= 0, got {self.optimization_level}')
        if self.max_num_tokens == -1:
            if self.enabled_chunked_context:
                self.max_num_tokens = 128
                warn(f'max_num_tokens set to {self.max_num_tokens} with chunked context enabled might not be optimal.')
            else:
                self.max_num_tokens = 2 * self.max_input_len
            LOGGER.debug(f'Inferred max_num_tokens={self.max_num_tokens}')
        return self

    @property
    def plugin_config(self) -> 'PluginConfig':
        config = PluginConfig()
        config.gemm_plugin = 'auto'
        config.gpt_attention_plugin = 'auto'
        config.set_context_fmha(ContextFMHAType.enabled)
        if self.sharding.world_size > 1:
            config.lookup_plugin = 'auto'
            config.set_nccl_plugin()
        if DataType(self.dtype) == DataType.FLOAT8:
            config.gemm_swiglu_plugin = True
        return config

    def to_builder_config(self, qmode: Optional['QuantMode']=None, plugin_config: Optional[PluginConfig]=None) -> 'BuildConfig':
        self.validate()
        plugin_config = plugin_config or self.plugin_config
        if qmode:
            plugin_config.use_fp8_context_fmha = qmode.has_fp8_qdq() or qmode.has_fp8_kv_cache()
            if qmode.is_weight_only():
                plugin_config.weight_only_groupwise_quant_matmul_plugin = 'auto'
            weight_sparsity = False
        else:
            weight_sparsity = False
        return BuildConfig(max_input_len=self.max_input_len, max_seq_len=self.max_output_len, max_batch_size=self.max_batch_size, max_beam_width=self.max_beam_width, max_num_tokens=self.max_num_tokens, builder_opt=self.optimization_level, plugin_config=plugin_config, use_fused_mlp=True, weight_sparsity=weight_sparsity)

    def with_sharding(self, tp: int=1, pp: int=1, gpus_per_node: int=8, sharding: Optional[ShardingInfo]=None) -> 'ExportConfig':
        self.sharding = sharding or ShardingInfo(tp_size=tp, pp_size=pp, world_size=tp * pp, gpus_per_node=gpus_per_node)
        return self

def auto_parallel(config: 'ExportConfig', world_size: int=INFER_NUM_LOCAL_GPUS) -> 'ExportConfig':
    if world_size < 1:
        from optimum.nvidia.utils.nvml import get_device_count
        world_size = get_device_count()
        LOGGER.info(f'Found {world_size} GPUs on the system')
    if world_size == 0:
        raise ValueError('No GPU found')
    elif world_size == 1:
        return config.with_sharding(tp=1, pp=1, gpus_per_node=world_size)
    else:
        LOGGER.info(f'Creating auto-parallelization strategy on {world_size}-GPUs')
        LOGGER.warning('Auto-parallelization strategy is currently in beta and might not be optimal')
        if world_size == 2:
            return config.with_sharding(tp=2, pp=1, gpus_per_node=world_size)
        elif world_size == 4:
            return config.with_sharding(tp=2, pp=2, gpus_per_node=world_size)
        elif world_size == 8:
            return config.with_sharding(tp=4, pp=2, gpus_per_node=world_size)
        else:
            raise ValueError(f'Unsupported number of GPUs: {world_size}. Please open-up and issue on the optimum-nvidia repository: https://github.com/huggingface/optimum-nvidia')

def sharded(config: 'ExportConfig', tp: int=1, pp: int=1) -> 'ExportConfig':
    if tp < 1:
        raise ValueError(f'Tensor Parallelism (tp) should be >= 1 (got: tp={tp})')
    if pp < 1:
        raise ValueError(f'Pipeline Parallelism (pp) should be >= 1 (got: pp={pp})')
    return config.with_sharding(sharding=ShardingInfo(tp_size=tp, pp_size=pp, world_size=tp * pp))

# File: optimum-nvidia-main/src/optimum/nvidia/export/converter.py
import shutil
from abc import ABC
from enum import Enum
from logging import getLogger
from os import PathLike
from pathlib import Path
from typing import TYPE_CHECKING, Optional, Sequence, Type, Union
from tensorrt_llm.builder import build
from optimum.nvidia.compression.modelopt import ModelOptQuantizer
from optimum.nvidia.export import Workspace
from optimum.nvidia.utils.nvml import get_device_name, is_post_ampere
if TYPE_CHECKING:
    from tensorrt_llm import BuildConfig, Mapping
    from tensorrt_llm.models import PretrainedModel
    from transformers import PreTrainedModel as TransformersPreTrainedModel
    from optimum.nvidia.compression.modelopt import ModelOptRecipe
LOGGER = getLogger()

def infer_plugin_from_build_config(config: 'BuildConfig') -> 'BuildConfig':
    if is_post_ampere():
        LOGGER.debug('Enabling Paged Context FMHA plugin')
        config.plugin_config.update_from_dict({'use_paged_context_fmha': True})
    config.plugin_config.update_from_dict({'enable_xqa': False})
    return config

class TensorRTArtifactKind(Enum):
    CHECKPOINTS = 'checkpoints'
    ENGINES = 'engines'

class TensorRTArtifact:

    @staticmethod
    def checkpoints(root: Union[str, PathLike]) -> 'TensorRTArtifact':
        return TensorRTArtifact(TensorRTArtifactKind.CHECKPOINTS, root)

    @staticmethod
    def engines(root: Union[str, PathLike]) -> 'TensorRTArtifact':
        return TensorRTArtifact(TensorRTArtifactKind.ENGINES, root)

    def __init__(self, kind: TensorRTArtifactKind, root: Union[str, PathLike]):
        self._kind = kind
        self._root = root

    @property
    def kind(self) -> TensorRTArtifactKind:
        return self._kind

    @property
    def root(self) -> Path:
        return Path(self._root)

    def push_to_hub(self):
        raise NotImplementedError()

class TensorRTModelConverter(ABC):
    CONFIG_CLASS: Type
    MODEL_CLASS: Type

    def __init__(self, model_id: str, subpart: str='', workspace: Optional[Union['Workspace', str, bytes, Path]]=None, license_path: Optional[Union[str, bytes, Path]]=None):
        LOGGER.info(f'Creating a model converter for {subpart}')
        if not workspace:
            target_device = get_device_name(0)[-1]
            workspace = Workspace.from_hub_cache(model_id, target_device, subpart=subpart)
        if isinstance(workspace, (str, bytes, Path)):
            workspace = Workspace(Path(workspace))
        LOGGER.debug(f'Initializing model converter workspace at {workspace.root}')
        self._workspace = workspace
        self._license_path = license_path

    @property
    def workspace(self) -> Workspace:
        return self._workspace

    def save_license(self, licence_filename: str='LICENSE'):
        if not (dst_licence_file_path := (self.workspace.root / licence_filename)).exists() and self._license_path:
            shutil.copyfile(self._license_path, dst_licence_file_path)

    def quantize(self, model: 'TransformersPreTrainedModel', qconfig: 'ModelOptRecipe') -> TensorRTArtifact:
        quantizer = ModelOptQuantizer(qconfig)
        quantizer.preprocess_model(model, workspace=self.workspace)
        quantizer.postprocess_model(model, workspace=self.workspace)
        self.save_license()
        return TensorRTArtifact.checkpoints(self._workspace.checkpoints_path)

    def convert(self, models: Union['PretrainedModel', Sequence['PretrainedModel']], mapping: Optional['Mapping']=None) -> TensorRTArtifact:
        if isinstance(models, PretrainedModel):
            models = [models]
        for (rank, model) in enumerate(models):
            LOGGER.info(f'Converting {models[0].config.architecture} model for rank {rank} to TRTLLM')
            model.save_checkpoint(str(self._workspace.checkpoints_path))
        self.save_license()
        return TensorRTArtifact.checkpoints(str(self._workspace.checkpoints_path))

    def build(self, models: Union['PretrainedModel', Sequence['PretrainedModel']], config: 'BuildConfig') -> TensorRTArtifact:
        if not isinstance(models, Sequence):
            models = [models]
        config = infer_plugin_from_build_config(config)
        for model in models:
            LOGGER.info(f'Building TRTLLM engine for rank {model.config.mapping.rank} ->> {config.to_dict()}')
            engine = build(model, config)
            engine.save(str(self._workspace.engines_path))
        self.save_license()
        return TensorRTArtifact.engines(str(self._workspace.engines_path))

# File: optimum-nvidia-main/src/optimum/nvidia/export/workspace.py
from dataclasses import dataclass
from pathlib import Path
from typing import Iterable, Optional
from huggingface_hub import cached_assets_path
from tensorrt_llm import __version__ as TRTLLM_VERSION
from optimum.nvidia import LIBRARY_NAME
from optimum.nvidia.export import PATH_FILE_CHECKPOINTS, PATH_FILE_ENGINES, PATH_FOLDER_CHECKPOINTS, PATH_FOLDER_ENGINES

@dataclass
class Workspace:
    root: Path

    @staticmethod
    def from_hub_cache(model_id: str, device: str, namespace: str=LIBRARY_NAME, version: str=TRTLLM_VERSION, subpart: Optional[str]=None) -> 'Workspace':
        assets_path = cached_assets_path(namespace, namespace=version, subfolder=model_id)
        assets_path = assets_path.joinpath(device)
        if subpart:
            assets_path = assets_path.joinpath(subpart)
        assets_path.mkdir(exist_ok=True, parents=True)
        return Workspace(assets_path)

    def __post_init__(self):
        if not self.checkpoints_path.exists():
            self.checkpoints_path.mkdir(parents=True)
        if not self.engines_path.exists():
            self.engines_path.mkdir(parents=True)

    @property
    def checkpoints_path(self) -> Path:
        return self.root / PATH_FOLDER_CHECKPOINTS

    @property
    def engines_path(self) -> Path:
        return self.root / PATH_FOLDER_ENGINES

    @property
    def checkpoints(self) -> Iterable[Path]:
        return self.checkpoints_path.glob(PATH_FILE_CHECKPOINTS)

    def engines(self) -> Iterable[Path]:
        return self.engines_path.glob(PATH_FILE_ENGINES)

# File: optimum-nvidia-main/src/optimum/nvidia/generation/logits_process.py
import torch
from transformers import ForceTokensLogitsProcessor, SuppressTokensAtBeginLogitsProcessor, SuppressTokensLogitsProcessor
from transformers.generation.logits_process import WhisperNoSpeechDetection

class TrtSuppressTokensLogitsProcessor(SuppressTokensLogitsProcessor):

    def __call__(self, step: int, input_ids: torch.Tensor, scores: torch.Tensor):
        scores = super().__call__(input_ids, scores)
        return scores

class TrtSuppressTokensAtBeginLogitsProcessor(SuppressTokensAtBeginLogitsProcessor):

    def __call__(self, step: int, input_ids: torch.Tensor, scores: torch.Tensor):
        scores = super().__call__(input_ids, scores)
        return scores

class TrtForceTokensLogitsProcessor(ForceTokensLogitsProcessor):

    def __call__(self, step: int, input_ids: torch.Tensor, scores: torch.Tensor):
        scores = super().__call__(input_ids, scores)
        return scores

class TrtWhisperNoSpeechDetection(WhisperNoSpeechDetection):

    def __call__(self, step: int, input_ids: torch.Tensor, scores: torch.Tensor):
        scores = super().__call__(input_ids, scores)
        return scores
LOGITS_PROCESSOR_MAP = {SuppressTokensLogitsProcessor: TrtSuppressTokensLogitsProcessor, SuppressTokensAtBeginLogitsProcessor: TrtSuppressTokensAtBeginLogitsProcessor, ForceTokensLogitsProcessor: TrtForceTokensLogitsProcessor, WhisperNoSpeechDetection: TrtWhisperNoSpeechDetection}

# File: optimum-nvidia-main/src/optimum/nvidia/hub.py
import re
from abc import ABCMeta, abstractmethod
from logging import getLogger
from os import PathLike, scandir, symlink
from pathlib import Path
from shutil import copyfile, copytree
from typing import Dict, Generator, Iterable, List, Mapping, Optional, Type, Union
import torch.cuda
from huggingface_hub import ModelHubMixin, snapshot_download
from huggingface_hub.hub_mixin import T
from tensorrt_llm import __version__ as trtllm_version
from tensorrt_llm.models import PretrainedConfig
from tensorrt_llm.models import PretrainedModel as TrtLlmPreTrainedModel
from transformers import AutoConfig, GenerationConfig
from transformers import PretrainedConfig as TransformersPretraineConfig
from transformers.utils import CONFIG_NAME, GENERATION_CONFIG_NAME, SAFE_WEIGHTS_INDEX_NAME
from optimum.nvidia import LIBRARY_NAME
from optimum.nvidia.compression.modelopt import ModelOptRecipe
from optimum.nvidia.export import PATH_FOLDER_ENGINES, ExportConfig, TensorRTModelConverter, Workspace, auto_parallel
from optimum.nvidia.lang import DataType
from optimum.nvidia.models import SupportsFromHuggingFace, SupportsTransformersConversion
from optimum.nvidia.models.base import SupportFromTrtLlmCheckpoint
from optimum.nvidia.utils import get_user_agent
from optimum.nvidia.utils.nvml import get_device_count, get_device_name
from optimum.utils import NormalizedConfig
ATTR_TRTLLM_ENGINE_FOLDER = '__trtllm_engine_folder__'
FILE_TRTLLM_ENGINE_PATTERN = 'rank[0-9]*.engine'
FILE_TRTLLM_CHECKPOINT_PATTERN = 'rank[0-9]*.engine'
FILE_LICENSE_NAME = 'LICENSE'
HUB_SNAPSHOT_ALLOW_PATTERNS = [CONFIG_NAME, GENERATION_CONFIG_NAME, SAFE_WEIGHTS_INDEX_NAME, '*.safetensors', FILE_LICENSE_NAME]
LOGGER = getLogger()

def folder_list_engines(folder: Path) -> Iterable[Path]:
    if folder.exists():
        return list(folder.glob('*.engine'))
    return []

def folder_list_checkpoints(folder: Path) -> Iterable[Path]:
    checkpoint_candidates = []
    if folder.exists():
        re_checkpoint_filename = re.compile('rank[0-9]+\\.safetensors')
        checkpoint_candidates = list(map(Path, filter(lambda item: re_checkpoint_filename.match(item.name), scandir(folder))))
    return checkpoint_candidates

def get_rank_from_filename(filename: str) -> int:
    name = filename.split('.')[0]
    if name.startswith('rank'):
        return int(name[3:])
    else:
        raise ValueError(f'Unknown filename format {filename} to extract rank from')

def get_trtllm_artifact(model_id: str, patterns: List[str], add_default_allow_patterns: bool=True) -> Path:
    if (local_path := Path(model_id)).exists():
        return local_path
    return Path(snapshot_download(repo_id=model_id, repo_type='model', library_name=LIBRARY_NAME, library_version=trtllm_version, user_agent=get_user_agent(), allow_patterns=patterns + HUB_SNAPSHOT_ALLOW_PATTERNS if add_default_allow_patterns else patterns))

def get_trtllm_checkpoints(model_id: str, device: str, dtype: str):
    if (workspace := Workspace.from_hub_cache(model_id, device)).checkpoints_path.exists():
        return workspace.checkpoints_path
    return get_trtllm_artifact(model_id, [f'{device}/{dtype}/**/*.safetensors'])

def get_trtllm_engines(model_id: str, device: str, dtype: str):
    if (workspace := Workspace.from_hub_cache(model_id, device)).engines_path.exists():
        return workspace.engines_path
    return get_trtllm_artifact(model_id, [f'{device}/{dtype}/**/{PATH_FOLDER_ENGINES}/*.engine'])

def from_ranked_checkpoints(checkpoints_folder: Path, target_class: Type[SupportFromTrtLlmCheckpoint]) -> Generator['TrtLlmPreTrainedModel', None, None]:
    root = str(checkpoints_folder)
    trtllm_config = PretrainedConfig.from_checkpoint(root)
    for rank in range(trtllm_config.mapping.world_size):
        yield target_class.from_checkpoint(root, rank, trtllm_config)

def from_ranked_hf_model(local_hf_model_path: Path, config: 'TransformersPretraineConfig', target_class: Type['TrtLlmPreTrainedModel'], export_config: 'ExportConfig'):
    root = str(local_hf_model_path)
    for rank in range(export_config.sharding.world_size):
        export_config.sharding.rank = rank
        ranked_model = target_class.from_hugging_face(root, dtype=DataType.from_torch(config.torch_dtype).value, mapping=export_config.sharding, load_by_shard=True, use_parallel_embedding=export_config.sharding.world_size > 1, share_embedding_table=config.tie_word_embeddings)
        ranked_model.config.mapping.rank = rank
        yield ranked_model

class HuggingFaceHubModel(ModelHubMixin, library_name=LIBRARY_NAME, languages=['python', 'c++'], tags=['optimum-nvidia', 'trtllm'], repo_url='https://github.com/huggingface/optimum-nvidia', docs_url='https://huggingface.co/docs/optimum/nvidia_overview', metaclass=ABCMeta):

    def __init__(self, engines_path: Union[str, PathLike, Path]):
        self._engines_path = Path(engines_path)

    @classmethod
    def _from_pretrained(cls: Type[T], *, model_id: str, config: Dict, revision: Optional[str], cache_dir: Optional[Union[str, Path]], force_download: bool, proxies: Optional[Dict], resume_download: bool, local_files_only: bool, token: Optional[Union[str, bool]], use_cuda_graph: bool=False, device_map: Optional[str]=None, export_config: Optional[ExportConfig]=None, quantization_config: Optional[ModelOptRecipe]=None, force_export: bool=False, export_only: bool=False, save_intermediate_checkpoints: bool=False) -> T:
        if get_device_count() < 1:
            raise ValueError('No GPU detected on this platform')
        device_name = get_device_name(0)[-1]
        if 'torch_dtype' in config:
            dtype = config['torch_dtype']
        elif 'pretrained_config' in config and 'dtype' in config['pretrained_config']:
            dtype = config['pretrained_config']['dtype']
        else:
            raise RuntimeError("Failed to detect model's dtype")
        local_model_id = Path(model_id)
        engines_folder = checkpoints_folder = None
        engine_files = checkpoint_files = []
        if local_model_id.exists() and local_model_id.is_dir():
            if any((engine_files := list(folder_list_engines(local_model_id)))):
                engines_folder = engine_files[0].parent
                checkpoints_folder = None
            else:
                checkpoint_files = list(folder_list_checkpoints(local_model_id))
                if checkpoint_files:
                    checkpoints_folder = checkpoint_files[0].parent
        else:
            if not force_export:
                LOGGER.debug(f'Retrieving prebuild engine(s) for device {device_name}')
                engines_folder = get_trtllm_engines(model_id, device_name, dtype)
                engine_files = folder_list_engines(engines_folder)
            if not engine_files:
                LOGGER.debug(f'Retrieving checkpoint(s) for {device_name}')
                checkpoints_folder = get_trtllm_checkpoints(model_id, device_name, dtype)
                checkpoint_files = folder_list_checkpoints(checkpoints_folder)
        if not engine_files:
            LOGGER.info(f'No prebuild engines nor checkpoint were found for {model_id}')
            if local_model_id.is_dir():
                LOGGER.debug(f'Retrieving model from local folder: {local_model_id}')
                original_checkpoints_path_for_conversion = local_model_id
                workspace = Workspace(local_model_id)
            else:
                LOGGER.debug(f'Retrieving model from snapshot {model_id} on the Hugging Face Hub')
                original_checkpoints_path_for_conversion = snapshot_download(model_id, repo_type='model', revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, allow_patterns=HUB_SNAPSHOT_ALLOW_PATTERNS)
                workspace = None
            config = NormalizedConfig(AutoConfig.for_model(**config))
            generation_config = GenerationConfig.from_pretrained(original_checkpoints_path_for_conversion)
            if FILE_LICENSE_NAME in original_checkpoints_path_for_conversion:
                licence_path = original_checkpoints_path_for_conversion.joinpath(FILE_LICENSE_NAME)
            else:
                licence_path = None
            export_config = export_config or ExportConfig.from_config(config)
            if device_map and device_map == 'auto':
                LOGGER.info('Auto-parallel we will be used')
                export_config = auto_parallel(export_config)
            if isinstance(cls, SupportsTransformersConversion):
                targets = cls.TRT_LLM_TARGET_MODEL_CLASSES
                if not isinstance(targets, Mapping):
                    targets = {'': targets}
                for (idx, (subpart, clazz)) in enumerate(targets.items()):
                    LOGGER.info(f'Building {model_id} {subpart} ({idx + 1} / {len(targets)})')
                    converter = TensorRTModelConverter(model_id, subpart, workspace, licence_path)
                    if quantization_config:
                        hf_model = cls.HF_LIBRARY_TARGET_MODEL_CLASS.from_pretrained(original_checkpoints_path_for_conversion, torch_dtype='auto', device_map='auto')
                        checkpoints_folder = converter.quantize(hf_model, quantization_config)
                        checkpoints_folder = checkpoints_folder.root
                        checkpoint_files = folder_list_checkpoints(checkpoints_folder)
                        del hf_model
                        torch.cuda.empty_cache()
                    if force_export or not len(list(converter.workspace.engines_path.glob('*.engine'))):
                        if checkpoint_files and isinstance(clazz, SupportFromTrtLlmCheckpoint):
                            ranked_models = from_ranked_checkpoints(checkpoints_folder, clazz)
                        elif isinstance(clazz, SupportsFromHuggingFace):
                            ranked_models = from_ranked_hf_model(original_checkpoints_path_for_conversion, config, clazz, export_config)
                        else:
                            raise TypeError(f"{clazz} can't convert from HF checkpoint")
                        generation_config = GenerationConfig.from_pretrained(original_checkpoints_path_for_conversion)
                        for ranked_model in ranked_models:
                            if save_intermediate_checkpoints:
                                _ = converter.convert(ranked_model)
                                LOGGER.info(f'Saved intermediate checkpoints at {converter.workspace.checkpoints_path}')
                            build_config = export_config.to_builder_config(ranked_model.config.quantization.quant_mode)
                            _ = converter.build(ranked_model, build_config)
                            engines_folder = converter.workspace.engines_path
                            generation_config.save_pretrained(engines_folder)
                        LOGGER.info(f'Saved TensorRT-LLM engines at {converter.workspace.engines_path}')
                    else:
                        LOGGER.info(f'Found existing engines at {converter.workspace.engines_path}')
            else:
                raise ValueError("Model doesn't support Hugging Face transformers conversion, aborting.")
        else:
            generation_config = GenerationConfig.from_pretrained(engines_folder)
        return cls(engines_path=engines_folder, generation_config=generation_config, load_engines=not export_only)

    @abstractmethod
    def _save_additional_parcels(self, save_directory: Path):
        raise NotImplementedError()

    def _save_pretrained(self, save_directory: Path) -> None:
        device_name = get_device_name(0)[-1]
        save_directory = save_directory.joinpath(device_name)
        save_directory.mkdir(parents=True, exist_ok=True)
        src_license_file_path = self._engines_path.parent / FILE_LICENSE_NAME
        dst_files = [src_license_file_path] if src_license_file_path.exists() else []
        dst_files += list(self._engines_path.glob('*'))
        for file in dst_files:
            try:
                symlink(file, save_directory.joinpath(file.relative_to(self._engines_path)))
            except OSError as ose:
                LOGGER.error(f'Failed to create symlink from current engine folder {self._engines_path.parent} to {save_directory}. Will default to copy based _save_pretrained', exc_info=ose)
                dst = save_directory.joinpath(file.relative_to(self._engines_path))
                if file.is_dir():
                    copytree(file, dst, symlinks=True)
                elif file:
                    copyfile(file, dst)
        self._save_additional_parcels(save_directory)

# File: optimum-nvidia-main/src/optimum/nvidia/lang/__init__.py
from enum import Enum
from typing import List
import torch

class DataType(str, Enum):
    FLOAT32 = 'float32'
    FLOAT16 = 'float16'
    BFLOAT16 = 'bfloat16'
    FLOAT8 = 'float8'
    INT64 = 'int64'
    INT32 = 'int32'
    INT8 = 'int8'
    UINT8 = 'uint8'
    BOOL = 'bool'

    @staticmethod
    def from_torch(dtype: torch.dtype) -> 'DataType':
        if dtype == torch.float32:
            return DataType.FLOAT32
        elif dtype == torch.float16:
            return DataType.FLOAT16
        elif dtype == torch.bfloat16:
            return DataType.BFLOAT16
        elif dtype == torch.float8_e4m3fn:
            return DataType.FLOAT8
        elif dtype == torch.int64:
            return DataType.INT64
        elif dtype == torch.int32:
            return DataType.INT32
        elif dtype == torch.int8:
            return DataType.INT8
        elif dtype == torch.uint8:
            return DataType.UINT8
        elif dtype == torch.bool:
            return DataType.BOOL
        else:
            raise ValueError(f'Unknown torch.dtype {dtype}')

    def to_trt(self) -> 'DataType':
        import tensorrt as trt
        if self == DataType.FLOAT32:
            return trt.DataType.FLOAT
        elif self == DataType.FLOAT16:
            return trt.DataType.HALF
        elif self == DataType.BFLOAT16:
            return trt.DataType.BF16
        elif self == DataType.FLOAT8:
            return trt.DataType.FP8
        elif self == DataType.INT8:
            return trt.DataType.INT8
        elif self == DataType.UINT8:
            return trt.DataType.UINT8
        elif self == DataType.INT32:
            return trt.DataType.INT32
        elif self == DataType.INT64:
            return trt.DataType.INT64
        elif self == DataType.BOOL:
            return trt.DataType.BOOL
        else:
            raise ValueError(f'Unknown value {self}')

    def to_torch(self):
        import torch
        if self == DataType.FLOAT32:
            return torch.float32
        elif self == DataType.FLOAT16:
            return torch.float16
        elif self == DataType.BFLOAT16:
            return torch.bfloat16
        elif self == DataType.FLOAT8:
            return torch.float8_e4m3fn
        elif self == DataType.INT8:
            return torch.int8
        elif self == DataType.UINT8:
            return torch.uint8
        elif self == DataType.INT32:
            return torch.int32
        elif self == DataType.INT64:
            return torch.int64
        elif self == DataType.BOOL:
            return torch.bool
        else:
            raise ValueError(f'Unknown value {self}')

    @staticmethod
    def values() -> List[str]:
        return [item.value for item in DataType]

# File: optimum-nvidia-main/src/optimum/nvidia/models/auto.py
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, Optional, Type, Union
from huggingface_hub import ModelHubMixin
from optimum.nvidia.errors import UnsupportedModelException
from optimum.nvidia.models.gemma import GemmaForCausalLM
from optimum.nvidia.models.llama import LlamaForCausalLM
from optimum.nvidia.utils import model_type_from_known_config
if TYPE_CHECKING:
    from optimum.nvidia.export import ExportConfig
    from optimum.nvidia.runtime import CausalLM

class AutoModelForCausalLM(ModelHubMixin):
    """"""
    _SUPPORTED_MODEL_CLASS = {'llama': LlamaForCausalLM, 'mistral': LlamaForCausalLM, 'mixtral': LlamaForCausalLM, 'gemma': GemmaForCausalLM}

    def __init__(self):
        super().__init__()

    @classmethod
    def _from_pretrained(cls: Type, *, model_id: str, revision: Optional[str], cache_dir: Optional[Union[str, Path]], force_download: bool, proxies: Optional[Dict], resume_download: bool, local_files_only: bool, token: Optional[Union[str, bool]], config: Optional[Dict[str, Any]]=None, export_config: Optional['ExportConfig']=None, force_export: bool=False, use_cuda_graph: bool=False, **model_kwargs) -> 'CausalLM':
        if config is None:
            raise ValueError('Unable to determine the model type with config = None')
        model_type = model_type_from_known_config(config)
        if not model_type or model_type not in AutoModelForCausalLM._SUPPORTED_MODEL_CLASS:
            raise UnsupportedModelException(model_type)
        model_clazz = AutoModelForCausalLM._SUPPORTED_MODEL_CLASS[model_type]
        model = model_clazz.from_pretrained(pretrained_model_name_or_path=model_id, config=config, revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, export_config=export_config, force_export=force_export, use_cuda_graph=use_cuda_graph, **model_kwargs)
        return model

# File: optimum-nvidia-main/src/optimum/nvidia/models/base.py
from os import PathLike
from typing import TYPE_CHECKING, Mapping, Optional, Protocol, Type, Union, runtime_checkable
if TYPE_CHECKING:
    from tensorrt_llm.models import PretrainedConfig
    from tensorrt_llm.top_model_mixin import TopModelMixin
    from transformers import PreTrainedModel as TransformersPreTrainedModel

@runtime_checkable
class SupportsFromHuggingFace(Protocol):

    @classmethod
    def from_hugging_face(cls, hf_model_dir: Union[str, bytes, PathLike], dtype: str='float16', mapping: Optional[Mapping]=None, **kwargs):
        ...

@runtime_checkable
class SupportFromTrtLlmCheckpoint(Protocol):

    @classmethod
    def from_checkpoint(cls, ckpt_dir: str, rank: Optional[int]=None, config: Optional['PretrainedConfig']=None):
        ...

@runtime_checkable
class SupportsTransformersConversion(Protocol):
    HF_LIBRARY_TARGET_MODEL_CLASS: Type['TransformersPreTrainedModel']
    TRT_LLM_TARGET_MODEL_CLASSES: Union[Type['TopModelMixin'], Mapping[str, Type['TopModelMixin']]]

# File: optimum-nvidia-main/src/optimum/nvidia/models/gemma.py
from logging import getLogger
from tensorrt_llm.models.gemma.model import GemmaForCausalLM as TrtGemmaForCausalLM
from transformers import GemmaForCausalLM as TransformersGemmaForCausalLM
from optimum.nvidia.hub import HuggingFaceHubModel
from optimum.nvidia.models import SupportsTransformersConversion
from optimum.nvidia.runtime import CausalLM
LOGGER = getLogger(__name__)

class GemmaForCausalLM(CausalLM, HuggingFaceHubModel, SupportsTransformersConversion):
    HF_LIBRARY_TARGET_MODEL_CLASS = TransformersGemmaForCausalLM
    TRT_LLM_TARGET_MODEL_CLASSES = TrtGemmaForCausalLM
    TRT_LLM_MANDATORY_CONVERSION_PARAMS = {'share_embedding_table': True}

# File: optimum-nvidia-main/src/optimum/nvidia/models/mistral.py
from logging import getLogger
from tensorrt_llm.models.llama.model import LLaMAForCausalLM
from transformers import MistralForCausalLM as TransformersMistralForCausalLM
from optimum.nvidia.hub import HuggingFaceHubModel
from optimum.nvidia.models import SupportsTransformersConversion
from optimum.nvidia.runtime import CausalLM
LOGGER = getLogger(__name__)

class MistralForCausalLM(CausalLM, HuggingFaceHubModel, SupportsTransformersConversion):
    HF_LIBRARY_TARGET_MODEL_CLASS = TransformersMistralForCausalLM
    TRT_LLM_TARGET_MODEL_CLASSES = LLaMAForCausalLM

# File: optimum-nvidia-main/src/optimum/nvidia/models/mixtral.py
from logging import getLogger
from tensorrt_llm.models.llama.model import LLaMAForCausalLM
from transformers import MixtralForCausalLM as TransformersMixtralForCausalLM
from optimum.nvidia.hub import HuggingFaceHubModel
from optimum.nvidia.models import SupportsTransformersConversion
from optimum.nvidia.runtime import CausalLM
LOGGER = getLogger(__name__)

class MixtralForCausalLM(CausalLM, HuggingFaceHubModel, SupportsTransformersConversion):
    HF_LIBRARY_TARGET_MODEL_CLASS = TransformersMixtralForCausalLM
    TRT_LLM_TARGET_MODEL_CLASSES = LLaMAForCausalLM

# File: optimum-nvidia-main/src/optimum/nvidia/models/whisper.py
from logging import getLogger
from typing import TYPE_CHECKING
from tensorrt_llm.models import DecoderModel as TrtDecoderModel
from tensorrt_llm.models import WhisperEncoder as TrtWhisperEncoder
from transformers.models.whisper.modeling_whisper import WhisperForConditionalGeneration as TransformersWhisperForConditionalGeneration
from optimum.nvidia.models import SupportsTransformersConversion
if TYPE_CHECKING:
    pass
LOGGER = getLogger(__name__)

class WhisperForConditionalGeneration(SupportsTransformersConversion):
    HF_LIBRARY_TARGET_MODEL_CLASS = TransformersWhisperForConditionalGeneration
    TRT_LLM_TARGET_MODEL_CLASSES = {'encoder': TrtWhisperEncoder, 'decoder': TrtDecoderModel}

# File: optimum-nvidia-main/src/optimum/nvidia/pipelines/__init__.py
from os import PathLike
from typing import Dict, Optional, Tuple, Type, Union
from huggingface_hub import model_info
from tensorrt_llm import Module
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
from optimum.nvidia import AutoModelForCausalLM
from optimum.nvidia.pipelines.text_generation import TextGenerationPipeline
from .base import Pipeline
SUPPORTED_MODEL_WITH_TASKS: Dict[str, Dict[str, Tuple[Type[Pipeline], Type]]] = {'gemma': {'text-generation': (TextGenerationPipeline, AutoModelForCausalLM)}, 'llama': {'text-generation': (TextGenerationPipeline, AutoModelForCausalLM)}, 'mistral': {'text-generation': (TextGenerationPipeline, AutoModelForCausalLM)}, 'mixtral': {'text-generation': (TextGenerationPipeline, AutoModelForCausalLM)}}

def get_target_class_for_model_and_task(task: str, architecture: str) -> Optional[Type]:
    task_ = SUPPORTED_MODEL_WITH_TASKS.get(task, None)
    if not task:
        raise NotImplementedError(f'Task {task} is not supported yet.')
    target = task_.get(architecture, None)
    if not target:
        raise NotImplementedError(f'Architecture {architecture} is not supported for task {task}. Only the following architectures are: {list(task_.keys())}')
    return target

def pipeline(task: str=None, model: Union[str, PathLike, Module]=None, tokenizer: Optional[Union[str, PreTrainedTokenizer, PreTrainedTokenizerFast]]=None, **kwargs):
    try:
        info = model_info(model)
    except Exception as e:
        raise RuntimeError(f'Failed to instantiate the pipeline inferring the task for model {model}: {e}')
    model_type = info.config.get('model_type', None)
    if not model_type:
        raise RuntimeError(f'Failed to infer model type for model {model}')
    elif model_type not in SUPPORTED_MODEL_WITH_TASKS:
        raise NotImplementedError(f'Model type {model_type} is not currently supported')
    if not task and getattr(info, 'library_name', 'transformers') == 'transformers':
        if not info.pipeline_tag:
            raise RuntimeError(f'Failed to infer the task for model {model}, please use `task` parameter')
        task = info.pipeline_tag
    if task not in SUPPORTED_MODEL_WITH_TASKS[model_type]:
        raise NotImplementedError(f'Task {task} is not supported yet for {model_type}.')
    if tokenizer is None:
        tokenizer = AutoTokenizer.from_pretrained(model, use_fast=True)
    (pipeline_factory, model_factory) = SUPPORTED_MODEL_WITH_TASKS[model_type][task]
    model = model_factory.from_pretrained(model, **kwargs)
    return pipeline_factory(model, tokenizer)

# File: optimum-nvidia-main/src/optimum/nvidia/pipelines/text_generation.py
import warnings
from enum import Enum
from typing import Dict, List, Union
import torch
from transformers import PreTrainedTokenizer, TensorType
from optimum.nvidia import AutoModelForCausalLM
from optimum.nvidia.runtime import CausalLM
from .base import Pipeline

class ReturnType(Enum):
    TENSORS = 0
    NEW_TEXT = 1
    FULL_TEXT = 2

class TextGenerationPipeline(Pipeline):
    TARGET_FACTORY = AutoModelForCausalLM
    __slots__ = ('tokenizer', '_runtime')

    def __init__(self, model: CausalLM, tokenizer: PreTrainedTokenizer):
        super().__init__()
        if tokenizer.eos_token and (not tokenizer.pad_token):
            tokenizer.pad_token = tokenizer.eos_token
        self.tokenizer = tokenizer
        self._runtime = model

    def __call__(self, inputs: Union[str, List[str]], add_special_tokens: bool=True, **kwargs):
        (preprocess_params, forward_params, postprocess_params) = self._sanitize_parameters(add_special_tokens=add_special_tokens, **kwargs)
        model_inputs = self.preprocess(inputs, **preprocess_params)
        model_outputs = self._forward(model_inputs, **forward_params)
        outputs = self.postprocess(model_outputs, **postprocess_params)
        return outputs

    def _sanitize_parameters(self, return_full_text=None, return_tensors=None, return_text=None, return_type=None, clean_up_tokenization_spaces=None, prefix=None, handle_long_generation=None, stop_sequence=None, add_special_tokens=False, **generate_kwargs):
        preprocess_params = {'add_special_tokens': add_special_tokens}
        if prefix is not None:
            preprocess_params['prefix'] = prefix
        if prefix:
            prefix_inputs = self.tokenizer(prefix, padding=False, add_special_tokens=add_special_tokens, return_tensors=TensorType.PYTORCH)
            generate_kwargs['prefix_length'] = prefix_inputs['input_ids'].shape[-1]
        if handle_long_generation is not None:
            if handle_long_generation not in {'hole'}:
                raise ValueError(f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected [None, 'hole']")
            preprocess_params['handle_long_generation'] = handle_long_generation
        preprocess_params.update(generate_kwargs)
        forward_params = generate_kwargs
        postprocess_params = {}
        if return_full_text is not None and return_type is None:
            if return_text is not None:
                raise ValueError('`return_text` is mutually exclusive with `return_full_text`')
            if return_tensors is not None:
                raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`')
            return_type = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT
        if return_tensors is not None and return_type is None:
            if return_text is not None:
                raise ValueError('`return_text` is mutually exclusive with `return_tensors`')
            return_type = ReturnType.TENSORS
        if return_type is not None:
            postprocess_params['return_type'] = return_type
        if clean_up_tokenization_spaces is not None:
            postprocess_params['clean_up_tokenization_spaces'] = clean_up_tokenization_spaces
        if stop_sequence is not None:
            stop_sequence_ids = self.tokenizer.encode(stop_sequence, add_special_tokens=False)
            if len(stop_sequence_ids) > 1:
                warnings.warn('Stopping on a multiple token sequence is not yet supported on transformers. The first token of the stop sequence will be used as the stop sequence string in the interim.')
            generate_kwargs['eos_token_id'] = stop_sequence_ids[0]
        return (preprocess_params, forward_params, postprocess_params)

    def _forward(self, model_inputs, **generate_kwargs):
        input_ids = model_inputs['input_ids']
        prompt_text = model_inputs.pop('prompt_text')
        attention_mask = model_inputs.get('attention_mask', None)
        max_new_tokens = generate_kwargs.pop('max_new_tokens', None)
        min_length = generate_kwargs.pop('min_length', -1)
        num_beams = generate_kwargs.pop('num_beams', 1)
        temperature = generate_kwargs.pop('temperature', 1.0)
        top_k = generate_kwargs.pop('top_k', 50)
        top_p = generate_kwargs.pop('top_p', 1.0)
        repetition_penalty = generate_kwargs.pop('repetition_penalty', 1.0)
        length_penalty = generate_kwargs.pop('length_penalty', 1.0)
        seed = generate_kwargs.pop('seed', 2017)
        (generated_sequence, lengths) = self._runtime.generate(input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=max_new_tokens, min_length=min_length, num_beams=num_beams, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, length_penalty=length_penalty, seed=seed)
        return {'generated_sequence': generated_sequence, 'lengths': lengths, 'input_ids': input_ids, 'prompt_text': prompt_text}

    def preprocess(self, prompt_text, prefix='', handle_long_generation=None, add_special_tokens=False, **generate_kwargs) -> Dict[str, torch.Tensor]:
        if isinstance(prompt_text, List):
            text = [prefix + prompt for prompt in prompt_text]
        else:
            text = prefix + prompt_text
        inputs = self.tokenizer(text, padding=False, add_special_tokens=add_special_tokens, return_tensors=TensorType.PYTORCH)
        inputs['prompt_text'] = prompt_text
        return inputs

    def postprocess(self, model_outputs, return_type=ReturnType.FULL_TEXT, clean_up_tokenization_spaces=True):
        generated_sequence = model_outputs['generated_sequence']
        generated_sequence = generated_sequence.cpu().numpy().tolist()
        records = []
        if return_type == ReturnType.TENSORS:
            return [{'generated_token_ids': generated for generated in generated_sequence}]
        for sequence in generated_sequence:
            text = self.tokenizer.decode(sequence, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces)
            record = {'generated_text': text}
            records.append(record)
        return records

# File: optimum-nvidia-main/src/optimum/nvidia/runtime.py
import asyncio
import json
import math
from logging import getLogger
from os import PathLike
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union
import torch
from tensorrt_llm.bindings.executor import ExecutorConfig, KvCacheConfig
from tensorrt_llm.executor import GenerationExecutor, GenerationRequest, GenerationResult
from tensorrt_llm.hlapi import SamplingParams
from optimum.nvidia.hub import HuggingFaceHubModel
from optimum.nvidia.utils.nvml import is_post_ampere
if TYPE_CHECKING:
    from transformers import GenerationConfig
LOGGER = getLogger(__name__)

def read_engine_config_file(path: Path) -> Dict[str, Any]:
    with open(path / 'config.json', 'r', encoding='utf-8') as config_f:
        return json.load(config_f)

def convert_generation_config(config: 'GenerationConfig') -> 'SamplingParams':
    return SamplingParams(end_id=config.eos_token_id, pad_id=config.pad_token_id, top_k=config.top_k if config.do_sample else 1, top_p=config.top_p, temperature=config.temperature, beam_width=config.num_beams if config.do_sample else 1, bad_token_ids=config.bad_words_ids, length_penalty=config.length_penalty, repetition_penalty=config.repetition_penalty, no_repeat_ngram_size=config.no_repeat_ngram_size if config.no_repeat_ngram_size > 0 else 1, min_length=config.min_length if config.min_length > 0 else 1, max_new_tokens=config.max_new_tokens, return_generation_logits=config.output_logits, return_log_probs=not config.renormalize_logits)

def default_executor_config(config: Dict[str, Any]) -> 'ExecutorConfig':
    build_config = config['build_config']
    plugin_config = config['build_config']['plugin_config']
    max_blocks_per_sequence = math.floor(build_config['max_seq_len'] / plugin_config['tokens_per_block'])
    return ExecutorConfig(enable_chunked_context=is_post_ampere(), kv_cache_config=KvCacheConfig(enable_block_reuse=True, max_tokens=build_config['max_beam_width'] * plugin_config['tokens_per_block'] * max_blocks_per_sequence))

class InferenceRuntimeBase:
    __slots__ = ('_config', '_executor', '_generation_config', '_sampling_config')

    def __init__(self, engines_path: Union[str, PathLike], generation_config: 'GenerationConfig', executor_config: Optional['ExecutorConfig']=None, load_engines: bool=True):
        engines_path = Path(engines_path)
        if not engines_path.exists():
            raise OSError(f"engine folder {engines_path} doesn't exist")
        self._config = read_engine_config_file(engines_path)
        self._generation_config = generation_config
        self._sampling_config = convert_generation_config(generation_config)
        if load_engines:
            self._executor = GenerationExecutor.create(engine=engines_path, executor_config=executor_config or default_executor_config(self._config))

    def generate(self, inputs: Union[List[int], 'torch.IntTensor'], generation_config: Optional['GenerationConfig']=None):
        sampling = convert_generation_config(generation_config) if generation_config else self._sampling_config
        if isinstance(inputs, torch.Tensor):
            inputs = inputs.tolist()
        result = self._executor.generate(inputs, sampling_params=sampling)
        return result[0].outputs[0].token_ids

    async def agenerate(self, inputs: Union[List[int], 'torch.IntTensor'], generation_config: Optional['GenerationConfig']=None) -> List[int]:
        sampling = convert_generation_config(generation_config) if generation_config else self._sampling_config
        if isinstance(inputs, torch.Tensor):
            inputs = inputs.tolist()
        futures = self._executor.generate_async(inputs, streaming=False, sampling_params=sampling)
        if isinstance(futures, GenerationRequest):
            results = await futures.aresult()
            return results.token_ids
        else:
            results = await asyncio.gather(*[f.aresult() for f in futures])
            return [r.token_ids for r in results]

class CausalLMOutput:
    __slots__ = ('_results',)

    def __init__(self, results: Union['GenerationResult', Sequence['GenerationResult']]):
        self._results = results

    @property
    def logits(self):
        return self._results.token_ids

    @property
    def loss(self) -> None:
        return None

class CausalLM(HuggingFaceHubModel, InferenceRuntimeBase):

    def __init__(self, engines_path: Union[str, PathLike, Path], generation_config: 'GenerationConfig', executor_config: Optional['ExecutorConfig']=None, load_engines: bool=True):
        InferenceRuntimeBase.__init__(self, engines_path, generation_config, executor_config, load_engines)
        HuggingFaceHubModel.__init__(self, engines_path)

    def _save_additional_parcels(self, save_directory: Path):
        self._generation_config.save_pretrained(save_directory, 'generation_config.json')

# File: optimum-nvidia-main/src/optimum/nvidia/subpackage/commands/export.py
import sys
from typing import TYPE_CHECKING, Optional, Union
from transformers import AutoConfig, AutoTokenizer
from optimum.commands import optimum_cli_subcommand
from optimum.commands.base import BaseOptimumCLICommand, CommandInfo
from optimum.commands.export.base import ExportCommand
from optimum.nvidia import AutoModelForCausalLM, ExportConfig
from optimum.nvidia.export.cli import common_trtllm_export_args
if TYPE_CHECKING:
    from argparse import ArgumentParser, Namespace, _SubParsersAction
    from pathlib import Path
OPTIMUM_NVIDIA_CLI_QUANTIZATION_TARGET_REF = 'TARGET_QUANTIZATION_RECIPE'

def import_source_file(fname: Union[str, 'Path'], modname: str):
    import importlib.util
    spec = importlib.util.spec_from_file_location(modname, fname)
    module = importlib.util.module_from_spec(spec)
    sys.modules[modname] = module
    spec.loader.exec_module(module)

@optimum_cli_subcommand(ExportCommand)
class TrtLlmExportCommand(BaseOptimumCLICommand):
    COMMAND = CommandInfo(name='trtllm', help='Export PyTorch models to TensorRT-LLM compiled engines')

    def __init__(self, subparsers: '_SubParsersAction', args: Optional['Namespace']=None, command: Optional['CommandInfo']=None, from_defaults_factory: bool=False, parser: Optional['ArgumentParser']=None):
        super().__init__(subparsers, args=args, command=command, from_defaults_factory=from_defaults_factory, parser=parser)
        self.args_string = ' '.join(sys.argv[3:])

    @staticmethod
    def parse_args(parser: 'ArgumentParser'):
        return common_trtllm_export_args(parser)

    def run(self):
        args = self.args
        if args.quantization:
            tokenizer = AutoTokenizer.from_pretrained(args.model)
            import_source_file(args.quantization, 'recipe')
            try:
                from recipe import TARGET_QUANTIZATION_RECIPE
                qconfig = TARGET_QUANTIZATION_RECIPE(tokenizer)
            except ImportError:
                raise ModuleNotFoundError(f"Global variable 'TARGET_QUANTIZATION_RECIPE' was not found in {args.quantization}. This is required to automatically detect and allocate the right recipe for quantization.")
        else:
            qconfig = None
        config = AutoConfig.from_pretrained(args.model)
        export = ExportConfig.from_config(config, args.max_batch_size)
        model = AutoModelForCausalLM.from_pretrained(args.model, export_config=export, quantization_config=qconfig, export_only=True, force_export=True)
        if args.destination:
            model.save_pretrained(args.destination)
        if args.push_to_hub:
            print(f'Exporting model to the Hugging Face Hub: {args.push_to_hub}')
            model.push_to_hub(args.push_to_hub, commit_message=f'Optimum-CLI TensorRT-LLM {args.model} export')

# File: optimum-nvidia-main/templates/inference-endpoints/postprocessing/1/model.py
import json
import numpy as np
import triton_python_backend_utils as pb_utils
from transformers import AutoTokenizer, LlamaTokenizer, T5Tokenizer

class TritonPythonModel:
    __slots__ = ('tokenizer', 'output_dtype')

    def initialize(self, args):
        model_config = json.loads(args['model_config'])
        tokenizer_dir = model_config['parameters']['tokenizer_dir']['string_value']
        self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, padding_side='left')
        self.tokenizer.pad_token = self.tokenizer.eos_token
        output_config = pb_utils.get_output_config_by_name(model_config, 'OUTPUT')
        self.output_dtype = pb_utils.triton_string_to_numpy(output_config['data_type'])

    def execute(self, requests):
        responses = []
        for (idx, request) in enumerate(requests):
            tokens_batch = pb_utils.get_input_tensor_by_name(request, 'TOKENS_BATCH').as_numpy()
            outputs = self._postprocessing(tokens_batch)
            output_tensor = pb_utils.Tensor('OUTPUT', np.array(outputs).astype(self.output_dtype))
            inference_response = pb_utils.InferenceResponse(output_tensors=[output_tensor])
            responses.append(inference_response)
        return responses

    def finalize(self):
        print('Cleaning up...')

    def _postprocessing(self, tokens_batch):
        outputs = []
        for beam_tokens in tokens_batch:
            for tokens in beam_tokens:
                output = self.tokenizer.decode(tokens)
                outputs.append(output.encode('utf8'))
        return outputs

# File: optimum-nvidia-main/templates/inference-endpoints/preprocessing/1/model.py
import csv
import json
from pathlib import Path
from typing import List, Sequence
import numpy as np
import triton_python_backend_utils as pb_utils
from tokenizers import Tokenizer
INPUT_NAMES = {'INPUT_ID', 'REQUEST_INPUT_LEN', 'BAD_WORDS_IDS', 'STOP_WORDS_IDS'}

class TritonPythonModel:
    __slots__ = ('tokenizer', 'pad_token', 'pad_token_id', 'input_id_dtype', 'request_input_len_dtype', 'bad_words_ids_dtype', 'stop_words_ids_dtype')

    def initialize(self, args):
        model_config = json.loads(args['model_config'])
        tokenizer_dir = Path(model_config['parameters']['tokenizer_dir']['string_value'])
        tokenizer_path = tokenizer_dir.joinpath('tokenizer.json')
        pad_to_multiple_of = int(model_config['parameters']['pad_to_multiple_of']['string_value'])
        special_tokens_map_path = tokenizer_dir.joinpath('special_tokens_map.json')
        with open(special_tokens_map_path, 'r', encoding='utf-8') as special_tokens_f:
            special_tokens_map = json.load(special_tokens_f)
        self.tokenizer = Tokenizer.from_file(str(tokenizer_path))
        if 'eos_token' in special_tokens_map:
            eos_token = special_tokens_map['eos_token']['content']
            eos_token_id = self.tokenizer.encode(eos_token, add_special_tokens=False).ids[0]
            self.pad_token = eos_token
            self.pad_token_id = eos_token_id
        for name in INPUT_NAMES:
            dtype = pb_utils.triton_string_to_numpy(pb_utils.get_output_config_by_name(model_config, name)['data_type'])
            setattr(self, name.lower() + '_dtype', dtype)

    def execute(self, requests: Sequence):
        responses = []
        for request in requests:
            response = self.handle_request(request)
            responses.append(response)
        return responses

    def finalize(self):
        print('Cleaning up...')

    def handle_request(self, request: Sequence):
        query = pb_utils.get_input_tensor_by_name(request, 'QUERY').as_numpy().item().decode('utf-8')
        request_output_len = pb_utils.get_input_tensor_by_name(request, 'REQUEST_OUTPUT_LEN')
        encoding = self.tokenizer.encode(query)
        bad_words_ids = pb_utils.Tensor('BAD_WORDS_IDS', np.array([[], []], dtype=self.bad_words_ids_dtype))
        stop_words_ids = pb_utils.Tensor('STOP_WORDS_IDS', np.array([[], []], dtype=self.stop_words_ids_dtype))
        input_ids = pb_utils.Tensor('INPUT_ID', np.array([encoding.ids], dtype=self.input_id_dtype))
        request_input_len = pb_utils.Tensor('REQUEST_INPUT_LEN', np.array([[len(encoding.ids)]], dtype=self.request_input_len_dtype))
        return pb_utils.InferenceResponse(output_tensors=[input_ids, bad_words_ids, stop_words_ids, request_input_len, request_output_len])

    def _to_word_list_format(self, word_dict: List[List[str]]):
        assert self.tokenizer != None, 'need to set tokenizer'
        flat_ids = []
        offsets = []
        for word_dict_item in word_dict:
            item_flat_ids = []
            item_offsets = []
            if isinstance(word_dict_item[0], bytes):
                word_dict_item = [word_dict_item[0].decode()]
            words = list(csv.reader(word_dict_item))[0]
            for word in words:
                ids = self.tokenizer.encode(word)
                if len(ids) == 0:
                    continue
                item_flat_ids += ids
                item_offsets.append(len(ids))
            flat_ids.append(np.array(item_flat_ids))
            offsets.append(np.cumsum(np.array(item_offsets)))
        pad_to = max(1, max((len(ids) for ids in flat_ids)))
        for (i, (ids, offs)) in enumerate(zip(flat_ids, offsets)):
            flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0)
            offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1)
        return np.array([flat_ids, offsets], dtype='int32').transpose((1, 0, 2))