File size: 54,232 Bytes
b1d4de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
# File: tokenizers-main/bindings/python/py_src/tokenizers/__init__.py
from enum import Enum
from typing import List, Tuple, Union
Offsets = Tuple[int, int]
TextInputSequence = str
''
PreTokenizedInputSequence = Union[List[str], Tuple[str]]
''
TextEncodeInput = Union[TextInputSequence, Tuple[TextInputSequence, TextInputSequence], List[TextInputSequence]]
''
PreTokenizedEncodeInput = Union[PreTokenizedInputSequence, Tuple[PreTokenizedInputSequence, PreTokenizedInputSequence], List[PreTokenizedInputSequence]]
''
InputSequence = Union[TextInputSequence, PreTokenizedInputSequence]
''
EncodeInput = Union[TextEncodeInput, PreTokenizedEncodeInput]
''

class OffsetReferential(Enum):
    ORIGINAL = 'original'
    NORMALIZED = 'normalized'

class OffsetType(Enum):
    BYTE = 'byte'
    CHAR = 'char'

class SplitDelimiterBehavior(Enum):
    REMOVED = 'removed'
    ISOLATED = 'isolated'
    MERGED_WITH_PREVIOUS = 'merged_with_previous'
    MERGED_WITH_NEXT = 'merged_with_next'
    CONTIGUOUS = 'contiguous'
from .tokenizers import AddedToken, Encoding, NormalizedString, PreTokenizedString, Regex, Token, Tokenizer, decoders, models, normalizers, pre_tokenizers, processors, trainers, __version__
from .implementations import BertWordPieceTokenizer, ByteLevelBPETokenizer, CharBPETokenizer, SentencePieceBPETokenizer, SentencePieceUnigramTokenizer

# File: tokenizers-main/bindings/python/py_src/tokenizers/decoders/__init__.py
from .. import decoders
Decoder = decoders.Decoder
ByteLevel = decoders.ByteLevel
Replace = decoders.Replace
WordPiece = decoders.WordPiece
ByteFallback = decoders.ByteFallback
Fuse = decoders.Fuse
Strip = decoders.Strip
Metaspace = decoders.Metaspace
BPEDecoder = decoders.BPEDecoder
CTC = decoders.CTC
Sequence = decoders.Sequence

# File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/base_tokenizer.py
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import AddedToken, EncodeInput, Encoding, InputSequence, Tokenizer
from tokenizers.decoders import Decoder
from tokenizers.models import Model
from tokenizers.normalizers import Normalizer
from tokenizers.pre_tokenizers import PreTokenizer
from tokenizers.processors import PostProcessor
Offsets = Tuple[int, int]

class BaseTokenizer:

    def __init__(self, tokenizer: Tokenizer, parameters=None):
        self._tokenizer = tokenizer
        self._parameters = parameters if parameters is not None else {}

    def __repr__(self):
        return 'Tokenizer(vocabulary_size={}, {})'.format(self._tokenizer.get_vocab_size(), ', '.join((k + '=' + str(v) for (k, v) in self._parameters.items())))

    def num_special_tokens_to_add(self, is_pair: bool) -> int:
        return self._tokenizer.num_special_tokens_to_add(is_pair)

    def get_vocab(self, with_added_tokens: bool=True) -> Dict[str, int]:
        return self._tokenizer.get_vocab(with_added_tokens=with_added_tokens)

    def get_added_tokens_decoder(self) -> Dict[int, AddedToken]:
        return self._tokenizer.get_added_tokens_decoder()

    def get_vocab_size(self, with_added_tokens: bool=True) -> int:
        return self._tokenizer.get_vocab_size(with_added_tokens=with_added_tokens)

    def enable_padding(self, direction: Optional[str]='right', pad_to_multiple_of: Optional[int]=None, pad_id: Optional[int]=0, pad_type_id: Optional[int]=0, pad_token: Optional[str]='[PAD]', length: Optional[int]=None):
        return self._tokenizer.enable_padding(direction=direction, pad_to_multiple_of=pad_to_multiple_of, pad_id=pad_id, pad_type_id=pad_type_id, pad_token=pad_token, length=length)

    def no_padding(self):
        return self._tokenizer.no_padding()

    @property
    def padding(self) -> Optional[dict]:
        return self._tokenizer.padding

    def enable_truncation(self, max_length: int, stride: Optional[int]=0, strategy: Optional[str]='longest_first'):
        return self._tokenizer.enable_truncation(max_length, stride=stride, strategy=strategy)

    def no_truncation(self):
        return self._tokenizer.no_truncation()

    @property
    def truncation(self) -> Optional[dict]:
        return self._tokenizer.truncation

    def add_tokens(self, tokens: List[Union[str, AddedToken]]) -> int:
        return self._tokenizer.add_tokens(tokens)

    def add_special_tokens(self, special_tokens: List[Union[str, AddedToken]]) -> int:
        return self._tokenizer.add_special_tokens(special_tokens)

    def normalize(self, sequence: str) -> str:
        return self._tokenizer.normalize(sequence)

    def encode(self, sequence: InputSequence, pair: Optional[InputSequence]=None, is_pretokenized: bool=False, add_special_tokens: bool=True) -> Encoding:
        if sequence is None:
            raise ValueError("encode: `sequence` can't be `None`")
        return self._tokenizer.encode(sequence, pair, is_pretokenized, add_special_tokens)

    def encode_batch(self, inputs: List[EncodeInput], is_pretokenized: bool=False, add_special_tokens: bool=True) -> List[Encoding]:
        if inputs is None:
            raise ValueError("encode_batch: `inputs` can't be `None`")
        return self._tokenizer.encode_batch(inputs, is_pretokenized, add_special_tokens)

    def decode(self, ids: List[int], skip_special_tokens: Optional[bool]=True) -> str:
        if ids is None:
            raise ValueError('None input is not valid. Should be a list of integers.')
        return self._tokenizer.decode(ids, skip_special_tokens=skip_special_tokens)

    def decode_batch(self, sequences: List[List[int]], skip_special_tokens: Optional[bool]=True) -> str:
        if sequences is None:
            raise ValueError('None input is not valid. Should be list of list of integers.')
        return self._tokenizer.decode_batch(sequences, skip_special_tokens=skip_special_tokens)

    def token_to_id(self, token: str) -> Optional[int]:
        return self._tokenizer.token_to_id(token)

    def id_to_token(self, id: int) -> Optional[str]:
        return self._tokenizer.id_to_token(id)

    def save_model(self, directory: str, prefix: Optional[str]=None):
        return self._tokenizer.model.save(directory, prefix=prefix)

    def save(self, path: str, pretty: bool=True):
        return self._tokenizer.save(path, pretty)

    def to_str(self, pretty: bool=False):
        return self._tokenizer.to_str(pretty)

    def post_process(self, encoding: Encoding, pair: Optional[Encoding]=None, add_special_tokens: bool=True) -> Encoding:
        return self._tokenizer.post_process(encoding, pair, add_special_tokens)

    @property
    def model(self) -> Model:
        return self._tokenizer.model

    @model.setter
    def model(self, model: Model):
        self._tokenizer.model = model

    @property
    def normalizer(self) -> Normalizer:
        return self._tokenizer.normalizer

    @normalizer.setter
    def normalizer(self, normalizer: Normalizer):
        self._tokenizer.normalizer = normalizer

    @property
    def pre_tokenizer(self) -> PreTokenizer:
        return self._tokenizer.pre_tokenizer

    @pre_tokenizer.setter
    def pre_tokenizer(self, pre_tokenizer: PreTokenizer):
        self._tokenizer.pre_tokenizer = pre_tokenizer

    @property
    def post_processor(self) -> PostProcessor:
        return self._tokenizer.post_processor

    @post_processor.setter
    def post_processor(self, post_processor: PostProcessor):
        self._tokenizer.post_processor = post_processor

    @property
    def decoder(self) -> Decoder:
        return self._tokenizer.decoder

    @decoder.setter
    def decoder(self, decoder: Decoder):
        self._tokenizer.decoder = decoder

# File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/bert_wordpiece.py
from typing import Dict, Iterator, List, Optional, Union
from tokenizers import AddedToken, Tokenizer, decoders, trainers
from tokenizers.models import WordPiece
from tokenizers.normalizers import BertNormalizer
from tokenizers.pre_tokenizers import BertPreTokenizer
from tokenizers.processors import BertProcessing
from .base_tokenizer import BaseTokenizer

class BertWordPieceTokenizer(BaseTokenizer):

    def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, unk_token: Union[str, AddedToken]='[UNK]', sep_token: Union[str, AddedToken]='[SEP]', cls_token: Union[str, AddedToken]='[CLS]', pad_token: Union[str, AddedToken]='[PAD]', mask_token: Union[str, AddedToken]='[MASK]', clean_text: bool=True, handle_chinese_chars: bool=True, strip_accents: Optional[bool]=None, lowercase: bool=True, wordpieces_prefix: str='##'):
        if vocab is not None:
            tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(unk_token)))
        else:
            tokenizer = Tokenizer(WordPiece(unk_token=str(unk_token)))
        if tokenizer.token_to_id(str(unk_token)) is not None:
            tokenizer.add_special_tokens([str(unk_token)])
        if tokenizer.token_to_id(str(sep_token)) is not None:
            tokenizer.add_special_tokens([str(sep_token)])
        if tokenizer.token_to_id(str(cls_token)) is not None:
            tokenizer.add_special_tokens([str(cls_token)])
        if tokenizer.token_to_id(str(pad_token)) is not None:
            tokenizer.add_special_tokens([str(pad_token)])
        if tokenizer.token_to_id(str(mask_token)) is not None:
            tokenizer.add_special_tokens([str(mask_token)])
        tokenizer.normalizer = BertNormalizer(clean_text=clean_text, handle_chinese_chars=handle_chinese_chars, strip_accents=strip_accents, lowercase=lowercase)
        tokenizer.pre_tokenizer = BertPreTokenizer()
        if vocab is not None:
            sep_token_id = tokenizer.token_to_id(str(sep_token))
            if sep_token_id is None:
                raise TypeError('sep_token not found in the vocabulary')
            cls_token_id = tokenizer.token_to_id(str(cls_token))
            if cls_token_id is None:
                raise TypeError('cls_token not found in the vocabulary')
            tokenizer.post_processor = BertProcessing((str(sep_token), sep_token_id), (str(cls_token), cls_token_id))
        tokenizer.decoder = decoders.WordPiece(prefix=wordpieces_prefix)
        parameters = {'model': 'BertWordPiece', 'unk_token': unk_token, 'sep_token': sep_token, 'cls_token': cls_token, 'pad_token': pad_token, 'mask_token': mask_token, 'clean_text': clean_text, 'handle_chinese_chars': handle_chinese_chars, 'strip_accents': strip_accents, 'lowercase': lowercase, 'wordpieces_prefix': wordpieces_prefix}
        super().__init__(tokenizer, parameters)

    @staticmethod
    def from_file(vocab: str, **kwargs):
        vocab = WordPiece.read_file(vocab)
        return BertWordPieceTokenizer(vocab, **kwargs)

    def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, limit_alphabet: int=1000, initial_alphabet: List[str]=[], special_tokens: List[Union[str, AddedToken]]=['[PAD]', '[UNK]', '[CLS]', '[SEP]', '[MASK]'], show_progress: bool=True, wordpieces_prefix: str='##'):
        trainer = trainers.WordPieceTrainer(vocab_size=vocab_size, min_frequency=min_frequency, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, special_tokens=special_tokens, show_progress=show_progress, continuing_subword_prefix=wordpieces_prefix)
        if isinstance(files, str):
            files = [files]
        self._tokenizer.train(files, trainer=trainer)

    def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, limit_alphabet: int=1000, initial_alphabet: List[str]=[], special_tokens: List[Union[str, AddedToken]]=['[PAD]', '[UNK]', '[CLS]', '[SEP]', '[MASK]'], show_progress: bool=True, wordpieces_prefix: str='##', length: Optional[int]=None):
        trainer = trainers.WordPieceTrainer(vocab_size=vocab_size, min_frequency=min_frequency, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, special_tokens=special_tokens, show_progress=show_progress, continuing_subword_prefix=wordpieces_prefix)
        self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length)

# File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/byte_level_bpe.py
from typing import Dict, Iterator, List, Optional, Tuple, Union
from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, processors, trainers
from tokenizers.models import BPE
from tokenizers.normalizers import Lowercase, Sequence, unicode_normalizer_from_str
from .base_tokenizer import BaseTokenizer

class ByteLevelBPETokenizer(BaseTokenizer):

    def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]]=None, add_prefix_space: bool=False, lowercase: bool=False, dropout: Optional[float]=None, unicode_normalizer: Optional[str]=None, continuing_subword_prefix: Optional[str]=None, end_of_word_suffix: Optional[str]=None, trim_offsets: bool=False):
        if vocab is not None and merges is not None:
            tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, continuing_subword_prefix=continuing_subword_prefix or '', end_of_word_suffix=end_of_word_suffix or ''))
        else:
            tokenizer = Tokenizer(BPE())
        normalizers = []
        if unicode_normalizer:
            normalizers += [unicode_normalizer_from_str(unicode_normalizer)]
        if lowercase:
            normalizers += [Lowercase()]
        if len(normalizers) > 0:
            if len(normalizers) > 1:
                tokenizer.normalizer = Sequence(normalizers)
            else:
                tokenizer.normalizer = normalizers[0]
        tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=add_prefix_space)
        tokenizer.decoder = decoders.ByteLevel()
        tokenizer.post_processor = processors.ByteLevel(trim_offsets=trim_offsets)
        parameters = {'model': 'ByteLevelBPE', 'add_prefix_space': add_prefix_space, 'lowercase': lowercase, 'dropout': dropout, 'unicode_normalizer': unicode_normalizer, 'continuing_subword_prefix': continuing_subword_prefix, 'end_of_word_suffix': end_of_word_suffix, 'trim_offsets': trim_offsets}
        super().__init__(tokenizer, parameters)

    @staticmethod
    def from_file(vocab_filename: str, merges_filename: str, **kwargs):
        (vocab, merges) = BPE.read_file(vocab_filename, merges_filename)
        return ByteLevelBPETokenizer(vocab, merges, **kwargs)

    def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, show_progress: bool=True, special_tokens: List[Union[str, AddedToken]]=[]):
        trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, show_progress=show_progress, special_tokens=special_tokens, initial_alphabet=pre_tokenizers.ByteLevel.alphabet())
        if isinstance(files, str):
            files = [files]
        self._tokenizer.train(files, trainer=trainer)

    def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, show_progress: bool=True, special_tokens: List[Union[str, AddedToken]]=[], length: Optional[int]=None):
        trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, show_progress=show_progress, special_tokens=special_tokens, initial_alphabet=pre_tokenizers.ByteLevel.alphabet())
        self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length)

# File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/char_level_bpe.py
from typing import Dict, Iterator, List, Optional, Tuple, Union
from .. import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers
from ..models import BPE
from ..normalizers import BertNormalizer, Lowercase, Sequence, unicode_normalizer_from_str
from .base_tokenizer import BaseTokenizer

class CharBPETokenizer(BaseTokenizer):

    def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]]=None, unk_token: Union[str, AddedToken]='<unk>', suffix: str='</w>', dropout: Optional[float]=None, lowercase: bool=False, unicode_normalizer: Optional[str]=None, bert_normalizer: bool=True, split_on_whitespace_only: bool=False):
        if vocab is not None and merges is not None:
            tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, unk_token=str(unk_token), end_of_word_suffix=suffix))
        else:
            tokenizer = Tokenizer(BPE(unk_token=str(unk_token), dropout=dropout, end_of_word_suffix=suffix))
        if tokenizer.token_to_id(str(unk_token)) is not None:
            tokenizer.add_special_tokens([str(unk_token)])
        normalizers = []
        if unicode_normalizer:
            normalizers += [unicode_normalizer_from_str(unicode_normalizer)]
        if bert_normalizer:
            normalizers += [BertNormalizer(lowercase=False)]
        if lowercase:
            normalizers += [Lowercase()]
        if len(normalizers) > 0:
            if len(normalizers) > 1:
                tokenizer.normalizer = Sequence(normalizers)
            else:
                tokenizer.normalizer = normalizers[0]
        if split_on_whitespace_only:
            tokenizer.pre_tokenizer = pre_tokenizers.WhitespaceSplit()
        else:
            tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
        tokenizer.decoder = decoders.BPEDecoder(suffix=suffix)
        parameters = {'model': 'BPE', 'unk_token': unk_token, 'suffix': suffix, 'dropout': dropout, 'lowercase': lowercase, 'unicode_normalizer': unicode_normalizer, 'bert_normalizer': bert_normalizer, 'split_on_whitespace_only': split_on_whitespace_only}
        super().__init__(tokenizer, parameters)

    @staticmethod
    def from_file(vocab_filename: str, merges_filename: str, **kwargs):
        (vocab, merges) = BPE.read_file(vocab_filename, merges_filename)
        return CharBPETokenizer(vocab, merges, **kwargs)

    def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=['<unk>'], limit_alphabet: int=1000, initial_alphabet: List[str]=[], suffix: Optional[str]='</w>', show_progress: bool=True):
        trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, end_of_word_suffix=suffix, show_progress=show_progress)
        if isinstance(files, str):
            files = [files]
        self._tokenizer.train(files, trainer=trainer)

    def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=['<unk>'], limit_alphabet: int=1000, initial_alphabet: List[str]=[], suffix: Optional[str]='</w>', show_progress: bool=True, length: Optional[int]=None):
        trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, end_of_word_suffix=suffix, show_progress=show_progress)
        self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length)

# File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/sentencepiece_bpe.py
from typing import Dict, Iterator, List, Optional, Tuple, Union
from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers
from tokenizers.models import BPE
from tokenizers.normalizers import NFKC
from .base_tokenizer import BaseTokenizer

class SentencePieceBPETokenizer(BaseTokenizer):

    def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]]=None, unk_token: Union[str, AddedToken]='<unk>', replacement: str='▁', add_prefix_space: bool=True, dropout: Optional[float]=None, fuse_unk: Optional[bool]=False):
        if vocab is not None and merges is not None:
            tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk))
        else:
            tokenizer = Tokenizer(BPE(dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk))
        if tokenizer.token_to_id(str(unk_token)) is not None:
            tokenizer.add_special_tokens([str(unk_token)])
        tokenizer.normalizer = NFKC()
        prepend_scheme = 'always' if add_prefix_space else 'never'
        tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
        tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
        parameters = {'model': 'SentencePieceBPE', 'unk_token': unk_token, 'replacement': replacement, 'add_prefix_space': add_prefix_space, 'dropout': dropout}
        super().__init__(tokenizer, parameters)

    @staticmethod
    def from_file(vocab_filename: str, merges_filename: str, **kwargs):
        (vocab, merges) = BPE.read_file(vocab_filename, merges_filename)
        return SentencePieceBPETokenizer(vocab, merges, **kwargs)

    def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=['<unk>'], limit_alphabet: int=1000, initial_alphabet: List[str]=[], show_progress: bool=True):
        trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, show_progress=show_progress)
        if isinstance(files, str):
            files = [files]
        self._tokenizer.train(files, trainer=trainer)

    def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=['<unk>'], limit_alphabet: int=1000, initial_alphabet: List[str]=[], show_progress: bool=True, length: Optional[int]=None):
        trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, show_progress=show_progress)
        self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length)

# File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/sentencepiece_unigram.py
import json
import os
from typing import Iterator, List, Optional, Union, Tuple
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.models import Unigram
from .base_tokenizer import BaseTokenizer

class SentencePieceUnigramTokenizer(BaseTokenizer):

    def __init__(self, vocab: Optional[List[Tuple[str, float]]]=None, replacement: str='▁', add_prefix_space: bool=True):
        if vocab is not None:
            tokenizer = Tokenizer(Unigram(vocab))
        else:
            tokenizer = Tokenizer(Unigram())
        tokenizer.normalizer = normalizers.Sequence([normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}'), ' ')])
        prepend_scheme = 'always' if add_prefix_space else 'never'
        tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
        tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
        parameters = {'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space}
        super().__init__(tokenizer, parameters)

    def train(self, files: Union[str, List[str]], vocab_size: int=8000, show_progress: bool=True, special_tokens: Optional[List[Union[str, AddedToken]]]=None, initial_alphabet: Optional[List[str]]=None, unk_token: Optional[str]=None):
        if special_tokens is None:
            special_tokens = []
        if initial_alphabet is None:
            initial_alphabet = []
        trainer = trainers.UnigramTrainer(vocab_size=vocab_size, special_tokens=special_tokens, show_progress=show_progress, initial_alphabet=initial_alphabet, unk_token=unk_token)
        if isinstance(files, str):
            files = [files]
        self._tokenizer.train(files, trainer=trainer)

    def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=8000, show_progress: bool=True, special_tokens: Optional[List[Union[str, AddedToken]]]=None, initial_alphabet: Optional[List[str]]=None, unk_token: Optional[str]=None, length: Optional[int]=None):
        if special_tokens is None:
            special_tokens = []
        if initial_alphabet is None:
            initial_alphabet = []
        trainer = trainers.UnigramTrainer(vocab_size=vocab_size, special_tokens=special_tokens, show_progress=show_progress, initial_alphabet=initial_alphabet, unk_token=unk_token)
        self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length)

    @staticmethod
    def from_spm(filename: str):
        try:
            import sys
            sys.path.append('.')
            import sentencepiece_model_pb2 as model
        except Exception:
            raise Exception("You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/src/sentencepiece/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required.")
        m = model.ModelProto()
        m.ParseFromString(open(filename, 'rb').read())
        precompiled_charsmap = m.normalizer_spec.precompiled_charsmap
        vocab = [(piece.piece, piece.score) for piece in m.pieces]
        unk_id = m.trainer_spec.unk_id
        model_type = m.trainer_spec.model_type
        byte_fallback = m.trainer_spec.byte_fallback
        if model_type != 1:
            raise Exception("You're trying to run a `Unigram` model but you're file was trained with a different algorithm")
        replacement = '▁'
        add_prefix_space = True
        tokenizer = Tokenizer(Unigram(vocab, unk_id, byte_fallback))
        if precompiled_charsmap:
            tokenizer.normalizer = normalizers.Sequence([normalizers.Precompiled(precompiled_charsmap), normalizers.Replace(Regex(' {2,}'), ' ')])
        else:
            tokenizer.normalizer = normalizers.Sequence([normalizers.Replace(Regex(' {2,}'), ' ')])
        prepend_scheme = 'always' if add_prefix_space else 'never'
        tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
        tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
        parameters = {'model': 'SentencePieceUnigram'}
        obj = BaseTokenizer.__new__(SentencePieceUnigramTokenizer, tokenizer, parameters)
        BaseTokenizer.__init__(obj, tokenizer, parameters)
        return obj

# File: tokenizers-main/bindings/python/py_src/tokenizers/normalizers/__init__.py
from .. import normalizers
Normalizer = normalizers.Normalizer
BertNormalizer = normalizers.BertNormalizer
NFD = normalizers.NFD
NFKD = normalizers.NFKD
NFC = normalizers.NFC
NFKC = normalizers.NFKC
Sequence = normalizers.Sequence
Lowercase = normalizers.Lowercase
Prepend = normalizers.Prepend
Strip = normalizers.Strip
StripAccents = normalizers.StripAccents
Nmt = normalizers.Nmt
Precompiled = normalizers.Precompiled
Replace = normalizers.Replace
ByteLevel = normalizers.ByteLevel
NORMALIZERS = {'nfc': NFC, 'nfd': NFD, 'nfkc': NFKC, 'nfkd': NFKD}

def unicode_normalizer_from_str(normalizer: str) -> Normalizer:
    if normalizer not in NORMALIZERS:
        raise ValueError('{} is not a known unicode normalizer. Available are {}'.format(normalizer, NORMALIZERS.keys()))
    return NORMALIZERS[normalizer]()

# File: tokenizers-main/bindings/python/py_src/tokenizers/pre_tokenizers/__init__.py
from .. import pre_tokenizers
PreTokenizer = pre_tokenizers.PreTokenizer
BertPreTokenizer = pre_tokenizers.BertPreTokenizer
ByteLevel = pre_tokenizers.ByteLevel
CharDelimiterSplit = pre_tokenizers.CharDelimiterSplit
Digits = pre_tokenizers.Digits
Metaspace = pre_tokenizers.Metaspace
Punctuation = pre_tokenizers.Punctuation
Sequence = pre_tokenizers.Sequence
Split = pre_tokenizers.Split
UnicodeScripts = pre_tokenizers.UnicodeScripts
Whitespace = pre_tokenizers.Whitespace
WhitespaceSplit = pre_tokenizers.WhitespaceSplit

# File: tokenizers-main/bindings/python/py_src/tokenizers/tools/visualizer.py
import itertools
import os
import re
from string import Template
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Tuple
from tokenizers import Encoding, Tokenizer
dirname = os.path.dirname(__file__)
css_filename = os.path.join(dirname, 'visualizer-styles.css')
with open(css_filename) as f:
    css = f.read()

class Annotation:
    start: int
    end: int
    label: int

    def __init__(self, start: int, end: int, label: str):
        self.start = start
        self.end = end
        self.label = label
AnnotationList = List[Annotation]
PartialIntList = List[Optional[int]]

class CharStateKey(NamedTuple):
    token_ix: Optional[int]
    anno_ix: Optional[int]

class CharState:
    char_ix: Optional[int]

    def __init__(self, char_ix):
        self.char_ix = char_ix
        self.anno_ix: Optional[int] = None
        self.tokens: List[int] = []

    @property
    def token_ix(self):
        return self.tokens[0] if len(self.tokens) > 0 else None

    @property
    def is_multitoken(self):
        return len(self.tokens) > 1

    def partition_key(self) -> CharStateKey:
        return CharStateKey(token_ix=self.token_ix, anno_ix=self.anno_ix)

class Aligned:
    pass

class EncodingVisualizer:
    unk_token_regex = re.compile('(.{1}\x08)?(unk|oov)(\x08.{1})?', flags=re.IGNORECASE)

    def __init__(self, tokenizer: Tokenizer, default_to_notebook: bool=True, annotation_converter: Optional[Callable[[Any], Annotation]]=None):
        if default_to_notebook:
            try:
                from IPython.core.display import HTML, display
            except ImportError:
                raise Exception("We couldn't import IPython utils for html display.\n                        Are you running in a notebook?\n                        You can also pass `default_to_notebook=False` to get back raw HTML\n                    ")
        self.tokenizer = tokenizer
        self.default_to_notebook = default_to_notebook
        self.annotation_coverter = annotation_converter
        pass

    def __call__(self, text: str, annotations: AnnotationList=[], default_to_notebook: Optional[bool]=None) -> Optional[str]:
        final_default_to_notebook = self.default_to_notebook
        if default_to_notebook is not None:
            final_default_to_notebook = default_to_notebook
        if final_default_to_notebook:
            try:
                from IPython.core.display import HTML, display
            except ImportError:
                raise Exception("We couldn't import IPython utils for html display.\n                    Are you running in a notebook?")
        if self.annotation_coverter is not None:
            annotations = list(map(self.annotation_coverter, annotations))
        encoding = self.tokenizer.encode(text)
        html = EncodingVisualizer.__make_html(text, encoding, annotations)
        if final_default_to_notebook:
            display(HTML(html))
        else:
            return html

    @staticmethod
    def calculate_label_colors(annotations: AnnotationList) -> Dict[str, str]:
        if len(annotations) == 0:
            return {}
        labels = set(map(lambda x: x.label, annotations))
        num_labels = len(labels)
        h_step = int(255 / num_labels)
        if h_step < 20:
            h_step = 20
        s = 32
        l = 64
        h = 10
        colors = {}
        for label in sorted(labels):
            colors[label] = f'hsl({h},{s}%,{l}%'
            h += h_step
        return colors

    @staticmethod
    def consecutive_chars_to_html(consecutive_chars_list: List[CharState], text: str, encoding: Encoding):
        first = consecutive_chars_list[0]
        if first.char_ix is None:
            stoken = encoding.tokens[first.token_ix]
            return f'<span class="special-token" data-stoken={stoken}></span>'
        last = consecutive_chars_list[-1]
        start = first.char_ix
        end = last.char_ix + 1
        span_text = text[start:end]
        css_classes = []
        data_items = {}
        if first.token_ix is not None:
            css_classes.append('token')
            if first.is_multitoken:
                css_classes.append('multi-token')
            if first.token_ix % 2:
                css_classes.append('odd-token')
            else:
                css_classes.append('even-token')
            if EncodingVisualizer.unk_token_regex.search(encoding.tokens[first.token_ix]) is not None:
                css_classes.append('special-token')
                data_items['stok'] = encoding.tokens[first.token_ix]
        else:
            css_classes.append('non-token')
        css = f'''class="{' '.join(css_classes)}"'''
        data = ''
        for (key, val) in data_items.items():
            data += f' data-{key}="{val}"'
        return f'<span {css} {data} >{span_text}</span>'

    @staticmethod
    def __make_html(text: str, encoding: Encoding, annotations: AnnotationList) -> str:
        char_states = EncodingVisualizer.__make_char_states(text, encoding, annotations)
        current_consecutive_chars = [char_states[0]]
        prev_anno_ix = char_states[0].anno_ix
        spans = []
        label_colors_dict = EncodingVisualizer.calculate_label_colors(annotations)
        cur_anno_ix = char_states[0].anno_ix
        if cur_anno_ix is not None:
            anno = annotations[cur_anno_ix]
            label = anno.label
            color = label_colors_dict[label]
            spans.append(f'<span class="annotation" style="color:{color}" data-label="{label}">')
        for cs in char_states[1:]:
            cur_anno_ix = cs.anno_ix
            if cur_anno_ix != prev_anno_ix:
                spans.append(EncodingVisualizer.consecutive_chars_to_html(current_consecutive_chars, text=text, encoding=encoding))
                current_consecutive_chars = [cs]
                if prev_anno_ix is not None:
                    spans.append('</span>')
                if cur_anno_ix is not None:
                    anno = annotations[cur_anno_ix]
                    label = anno.label
                    color = label_colors_dict[label]
                    spans.append(f'<span class="annotation" style="color:{color}" data-label="{label}">')
            prev_anno_ix = cur_anno_ix
            if cs.partition_key() == current_consecutive_chars[0].partition_key():
                current_consecutive_chars.append(cs)
            else:
                spans.append(EncodingVisualizer.consecutive_chars_to_html(current_consecutive_chars, text=text, encoding=encoding))
                current_consecutive_chars = [cs]
        spans.append(EncodingVisualizer.consecutive_chars_to_html(current_consecutive_chars, text=text, encoding=encoding))
        res = HTMLBody(spans)
        return res

    @staticmethod
    def __make_anno_map(text: str, annotations: AnnotationList) -> PartialIntList:
        annotation_map = [None] * len(text)
        for (anno_ix, a) in enumerate(annotations):
            for i in range(a.start, a.end):
                annotation_map[i] = anno_ix
        return annotation_map

    @staticmethod
    def __make_char_states(text: str, encoding: Encoding, annotations: AnnotationList) -> List[CharState]:
        annotation_map = EncodingVisualizer.__make_anno_map(text, annotations)
        char_states: List[CharState] = [CharState(char_ix) for char_ix in range(len(text))]
        for (token_ix, token) in enumerate(encoding.tokens):
            offsets = encoding.token_to_chars(token_ix)
            if offsets is not None:
                (start, end) = offsets
                for i in range(start, end):
                    char_states[i].tokens.append(token_ix)
        for (char_ix, anno_ix) in enumerate(annotation_map):
            char_states[char_ix].anno_ix = anno_ix
        return char_states

def HTMLBody(children: List[str], css_styles=css) -> str:
    children_text = ''.join(children)
    return f'\n    <html>\n        <head>\n            <style>\n                {css_styles}\n            </style>\n        </head>\n        <body>\n            <div class="tokenized-text" dir=auto>\n            {children_text}\n            </div>\n        </body>\n    </html>\n    '

# File: tokenizers-main/bindings/python/stub.py
import argparse
import inspect
import os
from pathlib import Path
INDENT = ' ' * 4
GENERATED_COMMENT = '# Generated content DO NOT EDIT\n'

def do_indent(text: str, indent: str):
    return text.replace('\n', f'\n{indent}')

def function(obj, indent, text_signature=None):
    if text_signature is None:
        text_signature = obj.__text_signature__
    string = ''
    string += f'{indent}def {obj.__name__}{text_signature}:\n'
    indent += INDENT
    string += f'{indent}"""\n'
    string += f'{indent}{do_indent(obj.__doc__, indent)}\n'
    string += f'{indent}"""\n'
    string += f'{indent}pass\n'
    string += '\n'
    string += '\n'
    return string

def member_sort(member):
    if inspect.isclass(member):
        value = 10 + len(inspect.getmro(member))
    else:
        value = 1
    return value

def fn_predicate(obj):
    value = inspect.ismethoddescriptor(obj) or inspect.isbuiltin(obj)
    if value:
        return obj.__doc__ and obj.__text_signature__ and (not obj.__name__.startswith('_'))
    if inspect.isgetsetdescriptor(obj):
        return obj.__doc__ and (not obj.__name__.startswith('_'))
    return False

def get_module_members(module):
    members = [member for (name, member) in inspect.getmembers(module) if not name.startswith('_') and (not inspect.ismodule(member))]
    members.sort(key=member_sort)
    return members

def pyi_file(obj, indent=''):
    string = ''
    if inspect.ismodule(obj):
        string += GENERATED_COMMENT
        members = get_module_members(obj)
        for member in members:
            string += pyi_file(member, indent)
    elif inspect.isclass(obj):
        indent += INDENT
        mro = inspect.getmro(obj)
        if len(mro) > 2:
            inherit = f'({mro[1].__name__})'
        else:
            inherit = ''
        string += f'class {obj.__name__}{inherit}:\n'
        body = ''
        if obj.__doc__:
            body += f'{indent}"""\n{indent}{do_indent(obj.__doc__, indent)}\n{indent}"""\n'
        fns = inspect.getmembers(obj, fn_predicate)
        if obj.__text_signature__:
            body += f'{indent}def __init__{obj.__text_signature__}:\n'
            body += f'{indent + INDENT}pass\n'
            body += '\n'
        for (name, fn) in fns:
            body += pyi_file(fn, indent=indent)
        if not body:
            body += f'{indent}pass\n'
        string += body
        string += '\n\n'
    elif inspect.isbuiltin(obj):
        string += f'{indent}@staticmethod\n'
        string += function(obj, indent)
    elif inspect.ismethoddescriptor(obj):
        string += function(obj, indent)
    elif inspect.isgetsetdescriptor(obj):
        string += f'{indent}@property\n'
        string += function(obj, indent, text_signature='(self)')
    else:
        raise Exception(f'Object {obj} is not supported')
    return string

def py_file(module, origin):
    members = get_module_members(module)
    string = GENERATED_COMMENT
    string += f'from .. import {origin}\n'
    string += '\n'
    for member in members:
        name = member.__name__
        string += f'{name} = {origin}.{name}\n'
    return string
import subprocess
from typing import List, Optional, Tuple

def do_ruff(code, is_pyi: bool):
    command = ['ruff', 'format', '--config', 'pyproject.toml', '--silent', '-']
    if is_pyi:
        command.extend(['--stdin-filename', 'test.pyi'])
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE)
    (stdout, _) = process.communicate(input=code.encode('utf-8'))
    return stdout.decode('utf-8')

def write(module, directory, origin, check=False):
    submodules = [(name, member) for (name, member) in inspect.getmembers(module) if inspect.ismodule(member)]
    filename = os.path.join(directory, '__init__.pyi')
    pyi_content = pyi_file(module)
    pyi_content = do_ruff(pyi_content, is_pyi=True)
    os.makedirs(directory, exist_ok=True)
    if check:
        with open(filename, 'r') as f:
            data = f.read()
            assert data == pyi_content, f'The content of {filename} seems outdated, please run `python stub.py`'
    else:
        with open(filename, 'w') as f:
            f.write(pyi_content)
    filename = os.path.join(directory, '__init__.py')
    py_content = py_file(module, origin)
    py_content = do_ruff(py_content, is_pyi=False)
    os.makedirs(directory, exist_ok=True)
    is_auto = False
    if not os.path.exists(filename):
        is_auto = True
    else:
        with open(filename, 'r') as f:
            line = f.readline()
            if line == GENERATED_COMMENT:
                is_auto = True
    if is_auto:
        if check:
            with open(filename, 'r') as f:
                data = f.read()
                assert data == py_content, f'The content of {filename} seems outdated, please run `python stub.py`'
        else:
            with open(filename, 'w') as f:
                f.write(py_content)
    for (name, submodule) in submodules:
        write(submodule, os.path.join(directory, name), f'{name}', check=check)
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--check', action='store_true')
    args = parser.parse_args()
    import tokenizers
    write(tokenizers.tokenizers, 'py_src/tokenizers/', 'tokenizers', check=args.check)

# File: tokenizers-main/docs/source/_ext/entities.py
from collections import defaultdict, abc
from typing import cast
from docutils import nodes
from docutils.parsers.rst import Directive
import sphinx
from sphinx.locale import _
from sphinx.util.docutils import SphinxDirective
from sphinx.errors import ExtensionError
from conf import languages as LANGUAGES
logger = sphinx.util.logging.getLogger(__name__)
GLOBALNAME = '$GLOBAL$'

def update(d, u):
    for (k, v) in u.items():
        if isinstance(v, abc.Mapping):
            d[k] = update(d.get(k, {}), v)
        else:
            d[k] = v
    return d

class EntityNode(nodes.General, nodes.Element):
    pass

class EntitiesNode(nodes.General, nodes.Element):
    pass

class AllEntities:

    def __init__(self):
        self.entities = defaultdict(dict)

    @classmethod
    def install(cls, env):
        if not hasattr(env, 'entity_all_entities'):
            entities = cls()
            env.entity_all_entities = entities
        return env.entity_all_entities

    def merge(self, other):
        self.entities.update(other.entities)

    def purge(self, docname):
        for env_docname in [GLOBALNAME, docname]:
            self.entities[env_docname] = dict([(name, entity) for (name, entity) in self.entities[env_docname].items() if entity['docname'] != docname])

    def _extract_entities(self, nodes):
        pass

    def _extract_options(self, nodes):
        pass

    def _add_entities(self, entities, language, is_global, docname):
        scope = GLOBALNAME if is_global else docname
        for entity in entities:
            name = f"{language}-{entity['name']}"
            content = entity['content']
            if name in self.entities[scope]:
                logger.warning(f'''Entity "{name}" has already been defined{(' globally' if is_global else '')}''', location=docname)
            self.entities[scope][name] = {'docname': docname, 'content': content}

    def _extract_global(self, nodes):
        for node in nodes:
            if node.tagname != 'field':
                raise Exception(f'Expected a field, found {node.tagname}')
            (name, _) = node.children
            if name.tagname != 'field_name':
                raise Exception(f'Expected a field name here, found {name_node.tagname}')
            if str(name.children[0]) == 'global':
                return True

    def _extract_entities(self, nodes):
        entities = []
        for node in nodes:
            if node.tagname != 'definition_list_item':
                raise Exception(f'Expected a list item here, found {node.tagname}')
            (name_node, content_node) = node.children
            if name_node.tagname != 'term':
                raise Exception(f'Expected a term here, found {name_node.tagname}')
            if content_node.tagname != 'definition':
                raise Exception(f'Expected a definition here, found {content_node.tagname}')
            name = str(name_node.children[0])
            if len(content_node.children) == 1 and content_node.children[0].tagname == 'paragraph':
                content = content_node.children[0].children[0]
            else:
                content = content_node
            entities.append({'name': name, 'content': content})
        return entities

    def extract(self, node, docname):
        is_global = False
        entities = []
        language = None
        for node in node.children:
            if language is None and node.tagname != 'paragraph':
                raise Exception(f'Expected language name:\n.. entities:: <LANGUAGE>')
            elif language is None and node.tagname == 'paragraph':
                language = str(node.children[0])
                if language not in LANGUAGES:
                    raise Exception(f'Unknown language "{language}. Might be missing a newline after language"')
            elif node.tagname == 'field_list':
                is_global = self._extract_global(node.children)
            elif node.tagname == 'definition_list':
                entities.extend(self._extract_entities(node.children))
            else:
                raise Exception(f'Expected a list of terms/options, found {node.tagname}')
        self._add_entities(entities, language, is_global, docname)

    def resolve_pendings(self, app):
        env = app.builder.env
        updates = defaultdict(dict)
        for env_docname in self.entities.keys():
            for (name, entity) in self.entities[env_docname].items():
                docname = entity['docname']
                node = entity['content']
                for node in node.traverse(sphinx.addnodes.pending_xref):
                    contnode = cast(nodes.TextElement, node[0].deepcopy())
                    newnode = None
                    typ = node['reftype']
                    target = node['reftarget']
                    refdoc = node.get('refdoc', docname)
                    domain = None
                    try:
                        if 'refdomain' in node and node['refdomain']:
                            try:
                                domain = env.domains[node['refdomain']]
                            except KeyError as exc:
                                raise NoUri(target, typ) from exc
                            newnode = domain.resolve_xref(env, refdoc, app.builder, typ, target, node, contnode)
                    except NoUri:
                        newnode = contnode
                    updates[env_docname][name] = {'docname': docname, 'content': newnode or contnode}
        update(self.entities, updates)

    def get(self, language, name, docname):
        name = f'{language}-{name}'
        if name in self.entities[docname]:
            return self.entities[docname][name]
        elif name in self.entities[GLOBALNAME]:
            return self.entities[GLOBALNAME][name]
        else:
            return None

class EntitiesDirective(SphinxDirective):
    has_content = True

    def run(self):
        content = nodes.definition_list()
        self.state.nested_parse(self.content, self.content_offset, content)
        try:
            entities = AllEntities.install(self.env)
            entities.extract(content, self.env.docname)
        except Exception as err:
            raise self.error(f'Malformed directive "entities": {err}')
        return []

def entity_role(name, rawtext, text, lineno, inliner, options={}, content=[]):
    node = EntityNode()
    node.entity = text
    return ([node], [])

def process_entity_nodes(app, doctree, docname):
    env = app.builder.env
    entities = AllEntities.install(env)
    entities.resolve_pendings(app)
    language = None
    try:
        language = next((l for l in LANGUAGES if l in app.tags))
    except Exception:
        logger.warning(f'No language tag specified, not resolving entities in {docname}')
    for node in doctree.traverse(EntityNode):
        if language is None:
            node.replace_self(nodes.Text(_(node.entity), _(node.entity)))
        else:
            entity = entities.get(language, node.entity, docname)
            if entity is None:
                node.replace_self(nodes.Text(_(node.entity), _(node.entity)))
                logger.warning(f'Entity "{node.entity}" has not been defined', location=node)
            else:
                node.replace_self(entity['content'])

def purge_entities(app, env, docname):
    entities = AllEntities.install(env)
    entities.purge(docname)

def merge_entities(app, env, docnames, other):
    entities = AllEntities.install(env)
    other_entities = AllEntities.install(other)
    entities.merge(other_entities)

def setup(app):
    app.add_node(EntityNode)
    app.add_node(EntitiesNode)
    app.add_directive('entities', EntitiesDirective)
    app.add_role('entity', entity_role)
    app.connect('doctree-resolved', process_entity_nodes)
    app.connect('env-merge-info', merge_entities)
    app.connect('env-purge-doc', purge_entities)
    return {'version': '0.1', 'parallel_read_safe': True, 'parallel_write_safe': True}

# File: tokenizers-main/docs/source/_ext/rust_doc.py
from docutils import nodes
import sphinx
from sphinx.locale import _
from conf import rust_version
logger = sphinx.util.logging.getLogger(__name__)

class RustRef:

    def __call__(self, name, rawtext, text, lineno, inliner, options={}, content=[]):
        doctype = name.split('_')[1]
        parts = text.split('::')
        if text.startswith('~'):
            title = parts[-1]
            parts[0] = parts[0][1:]
        else:
            content = text
        link = self.base_link()
        if doctype == 'struct':
            (l, title) = self.make_struct_link(parts, title)
        if doctype == 'func':
            (l, title) = self.make_func_link(parts, title)
        if doctype == 'meth':
            (l, title) = self.make_meth_link(parts, title)
        if doctype == 'trait':
            (l, title) = self.make_trait_link(parts, title)
        link += l
        node = nodes.reference(internal=False, refuri=link, text=title)
        wrapper = nodes.literal(classes=['xref'])
        wrapper += node
        return ([wrapper], [])

    def base_link(self):
        return f'https://docs.rs/tokenizers/{rust_version}'

    def make_struct_link(self, parts, title):
        link = ''
        struct_name = parts[-1]
        path = parts[:-1]
        for p in path:
            link += f'/{p}'
        link += f'/struct.{struct_name}.html'
        return (link, title)

    def make_func_link(self, parts, title):
        link = ''
        fn_name = parts[-1]
        path = parts[:-1]
        for p in path:
            link += f'/{p}'
        link += f'/fn.{fn_name}.html'
        return (link, title)

    def make_meth_link(self, parts, title):
        meth_name = parts[-1]
        if meth_name.endswith('()'):
            meth_name = meth_name[:-2]
        (link, title) = self.make_struct_link(parts[:-1], title)
        link += f'#method.{meth_name}'
        if not title.endswith(')'):
            title += '()'
        return (link, title)

    def make_trait_link(self, parts, title):
        link = ''
        trait_name = parts[-1]
        path = parts[:-1]
        for p in path:
            link += f'/{p}'
        link += f'/trait.{trait_name}.html'
        return (link, title)

def setup(app):
    app.add_role('rust_struct', RustRef())
    app.add_role('rust_func', RustRef())
    app.add_role('rust_meth', RustRef())
    app.add_role('rust_trait', RustRef())
    return {'version': '0.1', 'parallel_read_safe': True, 'parallel_write_safe': True}

# File: tokenizers-main/docs/source/_ext/toctree_tags.py
import re
from sphinx.directives.other import TocTree

class TocTreeTags(TocTree):
    hasPat = re.compile('^\\s*:(.+):(.+)$')

    def filter_entries(self, entries):
        filtered = []
        for e in entries:
            m = self.hasPat.match(e)
            if m != None:
                if self.env.app.tags.has(m.groups()[0]):
                    filtered.append(m.groups()[1])
            else:
                filtered.append(e)
        return filtered

    def run(self):
        self.content = self.filter_entries(self.content)
        return super().run()

def setup(app):
    app.add_directive('toctree-tags', TocTreeTags)
    return {'version': '0.1'}

# File: tokenizers-main/docs/source/conf.py
import os
import sys
sys.path.insert(0, os.path.abspath('./_ext'))
sys.path.insert(0, os.path.abspath('.'))
project = 'tokenizers'
copyright = '2020, huggingface'
author = 'huggingface'
release = ''
languages = ['node', 'rust', 'python']
rust_version = 'latest'
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'entities', 'rust_doc', 'toctree_tags']
templates_path = ['_templates']
exclude_patterns = []
html_theme = 'sphinx_rtd_theme'
html_theme_options = {'analytics_id': 'UA-83738774-2'}
html_static_path = ['_static']

def setup(app):
    for language in languages:
        if not tags.has(language):
            exclude_patterns.append(f'tutorials/{language}/*')
    app.add_css_file('css/huggingface.css')
    app.add_css_file('css/code-snippets.css')
    app.add_js_file('js/custom.js')