File size: 54,232 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 |
# File: tokenizers-main/bindings/python/py_src/tokenizers/__init__.py from enum import Enum from typing import List, Tuple, Union Offsets = Tuple[int, int] TextInputSequence = str '' PreTokenizedInputSequence = Union[List[str], Tuple[str]] '' TextEncodeInput = Union[TextInputSequence, Tuple[TextInputSequence, TextInputSequence], List[TextInputSequence]] '' PreTokenizedEncodeInput = Union[PreTokenizedInputSequence, Tuple[PreTokenizedInputSequence, PreTokenizedInputSequence], List[PreTokenizedInputSequence]] '' InputSequence = Union[TextInputSequence, PreTokenizedInputSequence] '' EncodeInput = Union[TextEncodeInput, PreTokenizedEncodeInput] '' class OffsetReferential(Enum): ORIGINAL = 'original' NORMALIZED = 'normalized' class OffsetType(Enum): BYTE = 'byte' CHAR = 'char' class SplitDelimiterBehavior(Enum): REMOVED = 'removed' ISOLATED = 'isolated' MERGED_WITH_PREVIOUS = 'merged_with_previous' MERGED_WITH_NEXT = 'merged_with_next' CONTIGUOUS = 'contiguous' from .tokenizers import AddedToken, Encoding, NormalizedString, PreTokenizedString, Regex, Token, Tokenizer, decoders, models, normalizers, pre_tokenizers, processors, trainers, __version__ from .implementations import BertWordPieceTokenizer, ByteLevelBPETokenizer, CharBPETokenizer, SentencePieceBPETokenizer, SentencePieceUnigramTokenizer # File: tokenizers-main/bindings/python/py_src/tokenizers/decoders/__init__.py from .. import decoders Decoder = decoders.Decoder ByteLevel = decoders.ByteLevel Replace = decoders.Replace WordPiece = decoders.WordPiece ByteFallback = decoders.ByteFallback Fuse = decoders.Fuse Strip = decoders.Strip Metaspace = decoders.Metaspace BPEDecoder = decoders.BPEDecoder CTC = decoders.CTC Sequence = decoders.Sequence # File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/base_tokenizer.py from typing import Dict, List, Optional, Tuple, Union from tokenizers import AddedToken, EncodeInput, Encoding, InputSequence, Tokenizer from tokenizers.decoders import Decoder from tokenizers.models import Model from tokenizers.normalizers import Normalizer from tokenizers.pre_tokenizers import PreTokenizer from tokenizers.processors import PostProcessor Offsets = Tuple[int, int] class BaseTokenizer: def __init__(self, tokenizer: Tokenizer, parameters=None): self._tokenizer = tokenizer self._parameters = parameters if parameters is not None else {} def __repr__(self): return 'Tokenizer(vocabulary_size={}, {})'.format(self._tokenizer.get_vocab_size(), ', '.join((k + '=' + str(v) for (k, v) in self._parameters.items()))) def num_special_tokens_to_add(self, is_pair: bool) -> int: return self._tokenizer.num_special_tokens_to_add(is_pair) def get_vocab(self, with_added_tokens: bool=True) -> Dict[str, int]: return self._tokenizer.get_vocab(with_added_tokens=with_added_tokens) def get_added_tokens_decoder(self) -> Dict[int, AddedToken]: return self._tokenizer.get_added_tokens_decoder() def get_vocab_size(self, with_added_tokens: bool=True) -> int: return self._tokenizer.get_vocab_size(with_added_tokens=with_added_tokens) def enable_padding(self, direction: Optional[str]='right', pad_to_multiple_of: Optional[int]=None, pad_id: Optional[int]=0, pad_type_id: Optional[int]=0, pad_token: Optional[str]='[PAD]', length: Optional[int]=None): return self._tokenizer.enable_padding(direction=direction, pad_to_multiple_of=pad_to_multiple_of, pad_id=pad_id, pad_type_id=pad_type_id, pad_token=pad_token, length=length) def no_padding(self): return self._tokenizer.no_padding() @property def padding(self) -> Optional[dict]: return self._tokenizer.padding def enable_truncation(self, max_length: int, stride: Optional[int]=0, strategy: Optional[str]='longest_first'): return self._tokenizer.enable_truncation(max_length, stride=stride, strategy=strategy) def no_truncation(self): return self._tokenizer.no_truncation() @property def truncation(self) -> Optional[dict]: return self._tokenizer.truncation def add_tokens(self, tokens: List[Union[str, AddedToken]]) -> int: return self._tokenizer.add_tokens(tokens) def add_special_tokens(self, special_tokens: List[Union[str, AddedToken]]) -> int: return self._tokenizer.add_special_tokens(special_tokens) def normalize(self, sequence: str) -> str: return self._tokenizer.normalize(sequence) def encode(self, sequence: InputSequence, pair: Optional[InputSequence]=None, is_pretokenized: bool=False, add_special_tokens: bool=True) -> Encoding: if sequence is None: raise ValueError("encode: `sequence` can't be `None`") return self._tokenizer.encode(sequence, pair, is_pretokenized, add_special_tokens) def encode_batch(self, inputs: List[EncodeInput], is_pretokenized: bool=False, add_special_tokens: bool=True) -> List[Encoding]: if inputs is None: raise ValueError("encode_batch: `inputs` can't be `None`") return self._tokenizer.encode_batch(inputs, is_pretokenized, add_special_tokens) def decode(self, ids: List[int], skip_special_tokens: Optional[bool]=True) -> str: if ids is None: raise ValueError('None input is not valid. Should be a list of integers.') return self._tokenizer.decode(ids, skip_special_tokens=skip_special_tokens) def decode_batch(self, sequences: List[List[int]], skip_special_tokens: Optional[bool]=True) -> str: if sequences is None: raise ValueError('None input is not valid. Should be list of list of integers.') return self._tokenizer.decode_batch(sequences, skip_special_tokens=skip_special_tokens) def token_to_id(self, token: str) -> Optional[int]: return self._tokenizer.token_to_id(token) def id_to_token(self, id: int) -> Optional[str]: return self._tokenizer.id_to_token(id) def save_model(self, directory: str, prefix: Optional[str]=None): return self._tokenizer.model.save(directory, prefix=prefix) def save(self, path: str, pretty: bool=True): return self._tokenizer.save(path, pretty) def to_str(self, pretty: bool=False): return self._tokenizer.to_str(pretty) def post_process(self, encoding: Encoding, pair: Optional[Encoding]=None, add_special_tokens: bool=True) -> Encoding: return self._tokenizer.post_process(encoding, pair, add_special_tokens) @property def model(self) -> Model: return self._tokenizer.model @model.setter def model(self, model: Model): self._tokenizer.model = model @property def normalizer(self) -> Normalizer: return self._tokenizer.normalizer @normalizer.setter def normalizer(self, normalizer: Normalizer): self._tokenizer.normalizer = normalizer @property def pre_tokenizer(self) -> PreTokenizer: return self._tokenizer.pre_tokenizer @pre_tokenizer.setter def pre_tokenizer(self, pre_tokenizer: PreTokenizer): self._tokenizer.pre_tokenizer = pre_tokenizer @property def post_processor(self) -> PostProcessor: return self._tokenizer.post_processor @post_processor.setter def post_processor(self, post_processor: PostProcessor): self._tokenizer.post_processor = post_processor @property def decoder(self) -> Decoder: return self._tokenizer.decoder @decoder.setter def decoder(self, decoder: Decoder): self._tokenizer.decoder = decoder # File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/bert_wordpiece.py from typing import Dict, Iterator, List, Optional, Union from tokenizers import AddedToken, Tokenizer, decoders, trainers from tokenizers.models import WordPiece from tokenizers.normalizers import BertNormalizer from tokenizers.pre_tokenizers import BertPreTokenizer from tokenizers.processors import BertProcessing from .base_tokenizer import BaseTokenizer class BertWordPieceTokenizer(BaseTokenizer): def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, unk_token: Union[str, AddedToken]='[UNK]', sep_token: Union[str, AddedToken]='[SEP]', cls_token: Union[str, AddedToken]='[CLS]', pad_token: Union[str, AddedToken]='[PAD]', mask_token: Union[str, AddedToken]='[MASK]', clean_text: bool=True, handle_chinese_chars: bool=True, strip_accents: Optional[bool]=None, lowercase: bool=True, wordpieces_prefix: str='##'): if vocab is not None: tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(unk_token))) else: tokenizer = Tokenizer(WordPiece(unk_token=str(unk_token))) if tokenizer.token_to_id(str(unk_token)) is not None: tokenizer.add_special_tokens([str(unk_token)]) if tokenizer.token_to_id(str(sep_token)) is not None: tokenizer.add_special_tokens([str(sep_token)]) if tokenizer.token_to_id(str(cls_token)) is not None: tokenizer.add_special_tokens([str(cls_token)]) if tokenizer.token_to_id(str(pad_token)) is not None: tokenizer.add_special_tokens([str(pad_token)]) if tokenizer.token_to_id(str(mask_token)) is not None: tokenizer.add_special_tokens([str(mask_token)]) tokenizer.normalizer = BertNormalizer(clean_text=clean_text, handle_chinese_chars=handle_chinese_chars, strip_accents=strip_accents, lowercase=lowercase) tokenizer.pre_tokenizer = BertPreTokenizer() if vocab is not None: sep_token_id = tokenizer.token_to_id(str(sep_token)) if sep_token_id is None: raise TypeError('sep_token not found in the vocabulary') cls_token_id = tokenizer.token_to_id(str(cls_token)) if cls_token_id is None: raise TypeError('cls_token not found in the vocabulary') tokenizer.post_processor = BertProcessing((str(sep_token), sep_token_id), (str(cls_token), cls_token_id)) tokenizer.decoder = decoders.WordPiece(prefix=wordpieces_prefix) parameters = {'model': 'BertWordPiece', 'unk_token': unk_token, 'sep_token': sep_token, 'cls_token': cls_token, 'pad_token': pad_token, 'mask_token': mask_token, 'clean_text': clean_text, 'handle_chinese_chars': handle_chinese_chars, 'strip_accents': strip_accents, 'lowercase': lowercase, 'wordpieces_prefix': wordpieces_prefix} super().__init__(tokenizer, parameters) @staticmethod def from_file(vocab: str, **kwargs): vocab = WordPiece.read_file(vocab) return BertWordPieceTokenizer(vocab, **kwargs) def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, limit_alphabet: int=1000, initial_alphabet: List[str]=[], special_tokens: List[Union[str, AddedToken]]=['[PAD]', '[UNK]', '[CLS]', '[SEP]', '[MASK]'], show_progress: bool=True, wordpieces_prefix: str='##'): trainer = trainers.WordPieceTrainer(vocab_size=vocab_size, min_frequency=min_frequency, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, special_tokens=special_tokens, show_progress=show_progress, continuing_subword_prefix=wordpieces_prefix) if isinstance(files, str): files = [files] self._tokenizer.train(files, trainer=trainer) def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, limit_alphabet: int=1000, initial_alphabet: List[str]=[], special_tokens: List[Union[str, AddedToken]]=['[PAD]', '[UNK]', '[CLS]', '[SEP]', '[MASK]'], show_progress: bool=True, wordpieces_prefix: str='##', length: Optional[int]=None): trainer = trainers.WordPieceTrainer(vocab_size=vocab_size, min_frequency=min_frequency, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, special_tokens=special_tokens, show_progress=show_progress, continuing_subword_prefix=wordpieces_prefix) self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length) # File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/byte_level_bpe.py from typing import Dict, Iterator, List, Optional, Tuple, Union from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, processors, trainers from tokenizers.models import BPE from tokenizers.normalizers import Lowercase, Sequence, unicode_normalizer_from_str from .base_tokenizer import BaseTokenizer class ByteLevelBPETokenizer(BaseTokenizer): def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]]=None, add_prefix_space: bool=False, lowercase: bool=False, dropout: Optional[float]=None, unicode_normalizer: Optional[str]=None, continuing_subword_prefix: Optional[str]=None, end_of_word_suffix: Optional[str]=None, trim_offsets: bool=False): if vocab is not None and merges is not None: tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, continuing_subword_prefix=continuing_subword_prefix or '', end_of_word_suffix=end_of_word_suffix or '')) else: tokenizer = Tokenizer(BPE()) normalizers = [] if unicode_normalizer: normalizers += [unicode_normalizer_from_str(unicode_normalizer)] if lowercase: normalizers += [Lowercase()] if len(normalizers) > 0: if len(normalizers) > 1: tokenizer.normalizer = Sequence(normalizers) else: tokenizer.normalizer = normalizers[0] tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=add_prefix_space) tokenizer.decoder = decoders.ByteLevel() tokenizer.post_processor = processors.ByteLevel(trim_offsets=trim_offsets) parameters = {'model': 'ByteLevelBPE', 'add_prefix_space': add_prefix_space, 'lowercase': lowercase, 'dropout': dropout, 'unicode_normalizer': unicode_normalizer, 'continuing_subword_prefix': continuing_subword_prefix, 'end_of_word_suffix': end_of_word_suffix, 'trim_offsets': trim_offsets} super().__init__(tokenizer, parameters) @staticmethod def from_file(vocab_filename: str, merges_filename: str, **kwargs): (vocab, merges) = BPE.read_file(vocab_filename, merges_filename) return ByteLevelBPETokenizer(vocab, merges, **kwargs) def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, show_progress: bool=True, special_tokens: List[Union[str, AddedToken]]=[]): trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, show_progress=show_progress, special_tokens=special_tokens, initial_alphabet=pre_tokenizers.ByteLevel.alphabet()) if isinstance(files, str): files = [files] self._tokenizer.train(files, trainer=trainer) def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, show_progress: bool=True, special_tokens: List[Union[str, AddedToken]]=[], length: Optional[int]=None): trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, show_progress=show_progress, special_tokens=special_tokens, initial_alphabet=pre_tokenizers.ByteLevel.alphabet()) self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length) # File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/char_level_bpe.py from typing import Dict, Iterator, List, Optional, Tuple, Union from .. import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers from ..models import BPE from ..normalizers import BertNormalizer, Lowercase, Sequence, unicode_normalizer_from_str from .base_tokenizer import BaseTokenizer class CharBPETokenizer(BaseTokenizer): def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]]=None, unk_token: Union[str, AddedToken]='<unk>', suffix: str='</w>', dropout: Optional[float]=None, lowercase: bool=False, unicode_normalizer: Optional[str]=None, bert_normalizer: bool=True, split_on_whitespace_only: bool=False): if vocab is not None and merges is not None: tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, unk_token=str(unk_token), end_of_word_suffix=suffix)) else: tokenizer = Tokenizer(BPE(unk_token=str(unk_token), dropout=dropout, end_of_word_suffix=suffix)) if tokenizer.token_to_id(str(unk_token)) is not None: tokenizer.add_special_tokens([str(unk_token)]) normalizers = [] if unicode_normalizer: normalizers += [unicode_normalizer_from_str(unicode_normalizer)] if bert_normalizer: normalizers += [BertNormalizer(lowercase=False)] if lowercase: normalizers += [Lowercase()] if len(normalizers) > 0: if len(normalizers) > 1: tokenizer.normalizer = Sequence(normalizers) else: tokenizer.normalizer = normalizers[0] if split_on_whitespace_only: tokenizer.pre_tokenizer = pre_tokenizers.WhitespaceSplit() else: tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() tokenizer.decoder = decoders.BPEDecoder(suffix=suffix) parameters = {'model': 'BPE', 'unk_token': unk_token, 'suffix': suffix, 'dropout': dropout, 'lowercase': lowercase, 'unicode_normalizer': unicode_normalizer, 'bert_normalizer': bert_normalizer, 'split_on_whitespace_only': split_on_whitespace_only} super().__init__(tokenizer, parameters) @staticmethod def from_file(vocab_filename: str, merges_filename: str, **kwargs): (vocab, merges) = BPE.read_file(vocab_filename, merges_filename) return CharBPETokenizer(vocab, merges, **kwargs) def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=['<unk>'], limit_alphabet: int=1000, initial_alphabet: List[str]=[], suffix: Optional[str]='</w>', show_progress: bool=True): trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, end_of_word_suffix=suffix, show_progress=show_progress) if isinstance(files, str): files = [files] self._tokenizer.train(files, trainer=trainer) def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=['<unk>'], limit_alphabet: int=1000, initial_alphabet: List[str]=[], suffix: Optional[str]='</w>', show_progress: bool=True, length: Optional[int]=None): trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, end_of_word_suffix=suffix, show_progress=show_progress) self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length) # File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/sentencepiece_bpe.py from typing import Dict, Iterator, List, Optional, Tuple, Union from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers from tokenizers.models import BPE from tokenizers.normalizers import NFKC from .base_tokenizer import BaseTokenizer class SentencePieceBPETokenizer(BaseTokenizer): def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]]=None, unk_token: Union[str, AddedToken]='<unk>', replacement: str='▁', add_prefix_space: bool=True, dropout: Optional[float]=None, fuse_unk: Optional[bool]=False): if vocab is not None and merges is not None: tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk)) else: tokenizer = Tokenizer(BPE(dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk)) if tokenizer.token_to_id(str(unk_token)) is not None: tokenizer.add_special_tokens([str(unk_token)]) tokenizer.normalizer = NFKC() prepend_scheme = 'always' if add_prefix_space else 'never' tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) parameters = {'model': 'SentencePieceBPE', 'unk_token': unk_token, 'replacement': replacement, 'add_prefix_space': add_prefix_space, 'dropout': dropout} super().__init__(tokenizer, parameters) @staticmethod def from_file(vocab_filename: str, merges_filename: str, **kwargs): (vocab, merges) = BPE.read_file(vocab_filename, merges_filename) return SentencePieceBPETokenizer(vocab, merges, **kwargs) def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=['<unk>'], limit_alphabet: int=1000, initial_alphabet: List[str]=[], show_progress: bool=True): trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, show_progress=show_progress) if isinstance(files, str): files = [files] self._tokenizer.train(files, trainer=trainer) def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=['<unk>'], limit_alphabet: int=1000, initial_alphabet: List[str]=[], show_progress: bool=True, length: Optional[int]=None): trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, show_progress=show_progress) self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length) # File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/sentencepiece_unigram.py import json import os from typing import Iterator, List, Optional, Union, Tuple from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.models import Unigram from .base_tokenizer import BaseTokenizer class SentencePieceUnigramTokenizer(BaseTokenizer): def __init__(self, vocab: Optional[List[Tuple[str, float]]]=None, replacement: str='▁', add_prefix_space: bool=True): if vocab is not None: tokenizer = Tokenizer(Unigram(vocab)) else: tokenizer = Tokenizer(Unigram()) tokenizer.normalizer = normalizers.Sequence([normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}'), ' ')]) prepend_scheme = 'always' if add_prefix_space else 'never' tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) parameters = {'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space} super().__init__(tokenizer, parameters) def train(self, files: Union[str, List[str]], vocab_size: int=8000, show_progress: bool=True, special_tokens: Optional[List[Union[str, AddedToken]]]=None, initial_alphabet: Optional[List[str]]=None, unk_token: Optional[str]=None): if special_tokens is None: special_tokens = [] if initial_alphabet is None: initial_alphabet = [] trainer = trainers.UnigramTrainer(vocab_size=vocab_size, special_tokens=special_tokens, show_progress=show_progress, initial_alphabet=initial_alphabet, unk_token=unk_token) if isinstance(files, str): files = [files] self._tokenizer.train(files, trainer=trainer) def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=8000, show_progress: bool=True, special_tokens: Optional[List[Union[str, AddedToken]]]=None, initial_alphabet: Optional[List[str]]=None, unk_token: Optional[str]=None, length: Optional[int]=None): if special_tokens is None: special_tokens = [] if initial_alphabet is None: initial_alphabet = [] trainer = trainers.UnigramTrainer(vocab_size=vocab_size, special_tokens=special_tokens, show_progress=show_progress, initial_alphabet=initial_alphabet, unk_token=unk_token) self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length) @staticmethod def from_spm(filename: str): try: import sys sys.path.append('.') import sentencepiece_model_pb2 as model except Exception: raise Exception("You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/src/sentencepiece/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required.") m = model.ModelProto() m.ParseFromString(open(filename, 'rb').read()) precompiled_charsmap = m.normalizer_spec.precompiled_charsmap vocab = [(piece.piece, piece.score) for piece in m.pieces] unk_id = m.trainer_spec.unk_id model_type = m.trainer_spec.model_type byte_fallback = m.trainer_spec.byte_fallback if model_type != 1: raise Exception("You're trying to run a `Unigram` model but you're file was trained with a different algorithm") replacement = '▁' add_prefix_space = True tokenizer = Tokenizer(Unigram(vocab, unk_id, byte_fallback)) if precompiled_charsmap: tokenizer.normalizer = normalizers.Sequence([normalizers.Precompiled(precompiled_charsmap), normalizers.Replace(Regex(' {2,}'), ' ')]) else: tokenizer.normalizer = normalizers.Sequence([normalizers.Replace(Regex(' {2,}'), ' ')]) prepend_scheme = 'always' if add_prefix_space else 'never' tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) parameters = {'model': 'SentencePieceUnigram'} obj = BaseTokenizer.__new__(SentencePieceUnigramTokenizer, tokenizer, parameters) BaseTokenizer.__init__(obj, tokenizer, parameters) return obj # File: tokenizers-main/bindings/python/py_src/tokenizers/normalizers/__init__.py from .. import normalizers Normalizer = normalizers.Normalizer BertNormalizer = normalizers.BertNormalizer NFD = normalizers.NFD NFKD = normalizers.NFKD NFC = normalizers.NFC NFKC = normalizers.NFKC Sequence = normalizers.Sequence Lowercase = normalizers.Lowercase Prepend = normalizers.Prepend Strip = normalizers.Strip StripAccents = normalizers.StripAccents Nmt = normalizers.Nmt Precompiled = normalizers.Precompiled Replace = normalizers.Replace ByteLevel = normalizers.ByteLevel NORMALIZERS = {'nfc': NFC, 'nfd': NFD, 'nfkc': NFKC, 'nfkd': NFKD} def unicode_normalizer_from_str(normalizer: str) -> Normalizer: if normalizer not in NORMALIZERS: raise ValueError('{} is not a known unicode normalizer. Available are {}'.format(normalizer, NORMALIZERS.keys())) return NORMALIZERS[normalizer]() # File: tokenizers-main/bindings/python/py_src/tokenizers/pre_tokenizers/__init__.py from .. import pre_tokenizers PreTokenizer = pre_tokenizers.PreTokenizer BertPreTokenizer = pre_tokenizers.BertPreTokenizer ByteLevel = pre_tokenizers.ByteLevel CharDelimiterSplit = pre_tokenizers.CharDelimiterSplit Digits = pre_tokenizers.Digits Metaspace = pre_tokenizers.Metaspace Punctuation = pre_tokenizers.Punctuation Sequence = pre_tokenizers.Sequence Split = pre_tokenizers.Split UnicodeScripts = pre_tokenizers.UnicodeScripts Whitespace = pre_tokenizers.Whitespace WhitespaceSplit = pre_tokenizers.WhitespaceSplit # File: tokenizers-main/bindings/python/py_src/tokenizers/tools/visualizer.py import itertools import os import re from string import Template from typing import Any, Callable, Dict, List, NamedTuple, Optional, Tuple from tokenizers import Encoding, Tokenizer dirname = os.path.dirname(__file__) css_filename = os.path.join(dirname, 'visualizer-styles.css') with open(css_filename) as f: css = f.read() class Annotation: start: int end: int label: int def __init__(self, start: int, end: int, label: str): self.start = start self.end = end self.label = label AnnotationList = List[Annotation] PartialIntList = List[Optional[int]] class CharStateKey(NamedTuple): token_ix: Optional[int] anno_ix: Optional[int] class CharState: char_ix: Optional[int] def __init__(self, char_ix): self.char_ix = char_ix self.anno_ix: Optional[int] = None self.tokens: List[int] = [] @property def token_ix(self): return self.tokens[0] if len(self.tokens) > 0 else None @property def is_multitoken(self): return len(self.tokens) > 1 def partition_key(self) -> CharStateKey: return CharStateKey(token_ix=self.token_ix, anno_ix=self.anno_ix) class Aligned: pass class EncodingVisualizer: unk_token_regex = re.compile('(.{1}\x08)?(unk|oov)(\x08.{1})?', flags=re.IGNORECASE) def __init__(self, tokenizer: Tokenizer, default_to_notebook: bool=True, annotation_converter: Optional[Callable[[Any], Annotation]]=None): if default_to_notebook: try: from IPython.core.display import HTML, display except ImportError: raise Exception("We couldn't import IPython utils for html display.\n Are you running in a notebook?\n You can also pass `default_to_notebook=False` to get back raw HTML\n ") self.tokenizer = tokenizer self.default_to_notebook = default_to_notebook self.annotation_coverter = annotation_converter pass def __call__(self, text: str, annotations: AnnotationList=[], default_to_notebook: Optional[bool]=None) -> Optional[str]: final_default_to_notebook = self.default_to_notebook if default_to_notebook is not None: final_default_to_notebook = default_to_notebook if final_default_to_notebook: try: from IPython.core.display import HTML, display except ImportError: raise Exception("We couldn't import IPython utils for html display.\n Are you running in a notebook?") if self.annotation_coverter is not None: annotations = list(map(self.annotation_coverter, annotations)) encoding = self.tokenizer.encode(text) html = EncodingVisualizer.__make_html(text, encoding, annotations) if final_default_to_notebook: display(HTML(html)) else: return html @staticmethod def calculate_label_colors(annotations: AnnotationList) -> Dict[str, str]: if len(annotations) == 0: return {} labels = set(map(lambda x: x.label, annotations)) num_labels = len(labels) h_step = int(255 / num_labels) if h_step < 20: h_step = 20 s = 32 l = 64 h = 10 colors = {} for label in sorted(labels): colors[label] = f'hsl({h},{s}%,{l}%' h += h_step return colors @staticmethod def consecutive_chars_to_html(consecutive_chars_list: List[CharState], text: str, encoding: Encoding): first = consecutive_chars_list[0] if first.char_ix is None: stoken = encoding.tokens[first.token_ix] return f'<span class="special-token" data-stoken={stoken}></span>' last = consecutive_chars_list[-1] start = first.char_ix end = last.char_ix + 1 span_text = text[start:end] css_classes = [] data_items = {} if first.token_ix is not None: css_classes.append('token') if first.is_multitoken: css_classes.append('multi-token') if first.token_ix % 2: css_classes.append('odd-token') else: css_classes.append('even-token') if EncodingVisualizer.unk_token_regex.search(encoding.tokens[first.token_ix]) is not None: css_classes.append('special-token') data_items['stok'] = encoding.tokens[first.token_ix] else: css_classes.append('non-token') css = f'''class="{' '.join(css_classes)}"''' data = '' for (key, val) in data_items.items(): data += f' data-{key}="{val}"' return f'<span {css} {data} >{span_text}</span>' @staticmethod def __make_html(text: str, encoding: Encoding, annotations: AnnotationList) -> str: char_states = EncodingVisualizer.__make_char_states(text, encoding, annotations) current_consecutive_chars = [char_states[0]] prev_anno_ix = char_states[0].anno_ix spans = [] label_colors_dict = EncodingVisualizer.calculate_label_colors(annotations) cur_anno_ix = char_states[0].anno_ix if cur_anno_ix is not None: anno = annotations[cur_anno_ix] label = anno.label color = label_colors_dict[label] spans.append(f'<span class="annotation" style="color:{color}" data-label="{label}">') for cs in char_states[1:]: cur_anno_ix = cs.anno_ix if cur_anno_ix != prev_anno_ix: spans.append(EncodingVisualizer.consecutive_chars_to_html(current_consecutive_chars, text=text, encoding=encoding)) current_consecutive_chars = [cs] if prev_anno_ix is not None: spans.append('</span>') if cur_anno_ix is not None: anno = annotations[cur_anno_ix] label = anno.label color = label_colors_dict[label] spans.append(f'<span class="annotation" style="color:{color}" data-label="{label}">') prev_anno_ix = cur_anno_ix if cs.partition_key() == current_consecutive_chars[0].partition_key(): current_consecutive_chars.append(cs) else: spans.append(EncodingVisualizer.consecutive_chars_to_html(current_consecutive_chars, text=text, encoding=encoding)) current_consecutive_chars = [cs] spans.append(EncodingVisualizer.consecutive_chars_to_html(current_consecutive_chars, text=text, encoding=encoding)) res = HTMLBody(spans) return res @staticmethod def __make_anno_map(text: str, annotations: AnnotationList) -> PartialIntList: annotation_map = [None] * len(text) for (anno_ix, a) in enumerate(annotations): for i in range(a.start, a.end): annotation_map[i] = anno_ix return annotation_map @staticmethod def __make_char_states(text: str, encoding: Encoding, annotations: AnnotationList) -> List[CharState]: annotation_map = EncodingVisualizer.__make_anno_map(text, annotations) char_states: List[CharState] = [CharState(char_ix) for char_ix in range(len(text))] for (token_ix, token) in enumerate(encoding.tokens): offsets = encoding.token_to_chars(token_ix) if offsets is not None: (start, end) = offsets for i in range(start, end): char_states[i].tokens.append(token_ix) for (char_ix, anno_ix) in enumerate(annotation_map): char_states[char_ix].anno_ix = anno_ix return char_states def HTMLBody(children: List[str], css_styles=css) -> str: children_text = ''.join(children) return f'\n <html>\n <head>\n <style>\n {css_styles}\n </style>\n </head>\n <body>\n <div class="tokenized-text" dir=auto>\n {children_text}\n </div>\n </body>\n </html>\n ' # File: tokenizers-main/bindings/python/stub.py import argparse import inspect import os from pathlib import Path INDENT = ' ' * 4 GENERATED_COMMENT = '# Generated content DO NOT EDIT\n' def do_indent(text: str, indent: str): return text.replace('\n', f'\n{indent}') def function(obj, indent, text_signature=None): if text_signature is None: text_signature = obj.__text_signature__ string = '' string += f'{indent}def {obj.__name__}{text_signature}:\n' indent += INDENT string += f'{indent}"""\n' string += f'{indent}{do_indent(obj.__doc__, indent)}\n' string += f'{indent}"""\n' string += f'{indent}pass\n' string += '\n' string += '\n' return string def member_sort(member): if inspect.isclass(member): value = 10 + len(inspect.getmro(member)) else: value = 1 return value def fn_predicate(obj): value = inspect.ismethoddescriptor(obj) or inspect.isbuiltin(obj) if value: return obj.__doc__ and obj.__text_signature__ and (not obj.__name__.startswith('_')) if inspect.isgetsetdescriptor(obj): return obj.__doc__ and (not obj.__name__.startswith('_')) return False def get_module_members(module): members = [member for (name, member) in inspect.getmembers(module) if not name.startswith('_') and (not inspect.ismodule(member))] members.sort(key=member_sort) return members def pyi_file(obj, indent=''): string = '' if inspect.ismodule(obj): string += GENERATED_COMMENT members = get_module_members(obj) for member in members: string += pyi_file(member, indent) elif inspect.isclass(obj): indent += INDENT mro = inspect.getmro(obj) if len(mro) > 2: inherit = f'({mro[1].__name__})' else: inherit = '' string += f'class {obj.__name__}{inherit}:\n' body = '' if obj.__doc__: body += f'{indent}"""\n{indent}{do_indent(obj.__doc__, indent)}\n{indent}"""\n' fns = inspect.getmembers(obj, fn_predicate) if obj.__text_signature__: body += f'{indent}def __init__{obj.__text_signature__}:\n' body += f'{indent + INDENT}pass\n' body += '\n' for (name, fn) in fns: body += pyi_file(fn, indent=indent) if not body: body += f'{indent}pass\n' string += body string += '\n\n' elif inspect.isbuiltin(obj): string += f'{indent}@staticmethod\n' string += function(obj, indent) elif inspect.ismethoddescriptor(obj): string += function(obj, indent) elif inspect.isgetsetdescriptor(obj): string += f'{indent}@property\n' string += function(obj, indent, text_signature='(self)') else: raise Exception(f'Object {obj} is not supported') return string def py_file(module, origin): members = get_module_members(module) string = GENERATED_COMMENT string += f'from .. import {origin}\n' string += '\n' for member in members: name = member.__name__ string += f'{name} = {origin}.{name}\n' return string import subprocess from typing import List, Optional, Tuple def do_ruff(code, is_pyi: bool): command = ['ruff', 'format', '--config', 'pyproject.toml', '--silent', '-'] if is_pyi: command.extend(['--stdin-filename', 'test.pyi']) process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) (stdout, _) = process.communicate(input=code.encode('utf-8')) return stdout.decode('utf-8') def write(module, directory, origin, check=False): submodules = [(name, member) for (name, member) in inspect.getmembers(module) if inspect.ismodule(member)] filename = os.path.join(directory, '__init__.pyi') pyi_content = pyi_file(module) pyi_content = do_ruff(pyi_content, is_pyi=True) os.makedirs(directory, exist_ok=True) if check: with open(filename, 'r') as f: data = f.read() assert data == pyi_content, f'The content of {filename} seems outdated, please run `python stub.py`' else: with open(filename, 'w') as f: f.write(pyi_content) filename = os.path.join(directory, '__init__.py') py_content = py_file(module, origin) py_content = do_ruff(py_content, is_pyi=False) os.makedirs(directory, exist_ok=True) is_auto = False if not os.path.exists(filename): is_auto = True else: with open(filename, 'r') as f: line = f.readline() if line == GENERATED_COMMENT: is_auto = True if is_auto: if check: with open(filename, 'r') as f: data = f.read() assert data == py_content, f'The content of {filename} seems outdated, please run `python stub.py`' else: with open(filename, 'w') as f: f.write(py_content) for (name, submodule) in submodules: write(submodule, os.path.join(directory, name), f'{name}', check=check) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--check', action='store_true') args = parser.parse_args() import tokenizers write(tokenizers.tokenizers, 'py_src/tokenizers/', 'tokenizers', check=args.check) # File: tokenizers-main/docs/source/_ext/entities.py from collections import defaultdict, abc from typing import cast from docutils import nodes from docutils.parsers.rst import Directive import sphinx from sphinx.locale import _ from sphinx.util.docutils import SphinxDirective from sphinx.errors import ExtensionError from conf import languages as LANGUAGES logger = sphinx.util.logging.getLogger(__name__) GLOBALNAME = '$GLOBAL$' def update(d, u): for (k, v) in u.items(): if isinstance(v, abc.Mapping): d[k] = update(d.get(k, {}), v) else: d[k] = v return d class EntityNode(nodes.General, nodes.Element): pass class EntitiesNode(nodes.General, nodes.Element): pass class AllEntities: def __init__(self): self.entities = defaultdict(dict) @classmethod def install(cls, env): if not hasattr(env, 'entity_all_entities'): entities = cls() env.entity_all_entities = entities return env.entity_all_entities def merge(self, other): self.entities.update(other.entities) def purge(self, docname): for env_docname in [GLOBALNAME, docname]: self.entities[env_docname] = dict([(name, entity) for (name, entity) in self.entities[env_docname].items() if entity['docname'] != docname]) def _extract_entities(self, nodes): pass def _extract_options(self, nodes): pass def _add_entities(self, entities, language, is_global, docname): scope = GLOBALNAME if is_global else docname for entity in entities: name = f"{language}-{entity['name']}" content = entity['content'] if name in self.entities[scope]: logger.warning(f'''Entity "{name}" has already been defined{(' globally' if is_global else '')}''', location=docname) self.entities[scope][name] = {'docname': docname, 'content': content} def _extract_global(self, nodes): for node in nodes: if node.tagname != 'field': raise Exception(f'Expected a field, found {node.tagname}') (name, _) = node.children if name.tagname != 'field_name': raise Exception(f'Expected a field name here, found {name_node.tagname}') if str(name.children[0]) == 'global': return True def _extract_entities(self, nodes): entities = [] for node in nodes: if node.tagname != 'definition_list_item': raise Exception(f'Expected a list item here, found {node.tagname}') (name_node, content_node) = node.children if name_node.tagname != 'term': raise Exception(f'Expected a term here, found {name_node.tagname}') if content_node.tagname != 'definition': raise Exception(f'Expected a definition here, found {content_node.tagname}') name = str(name_node.children[0]) if len(content_node.children) == 1 and content_node.children[0].tagname == 'paragraph': content = content_node.children[0].children[0] else: content = content_node entities.append({'name': name, 'content': content}) return entities def extract(self, node, docname): is_global = False entities = [] language = None for node in node.children: if language is None and node.tagname != 'paragraph': raise Exception(f'Expected language name:\n.. entities:: <LANGUAGE>') elif language is None and node.tagname == 'paragraph': language = str(node.children[0]) if language not in LANGUAGES: raise Exception(f'Unknown language "{language}. Might be missing a newline after language"') elif node.tagname == 'field_list': is_global = self._extract_global(node.children) elif node.tagname == 'definition_list': entities.extend(self._extract_entities(node.children)) else: raise Exception(f'Expected a list of terms/options, found {node.tagname}') self._add_entities(entities, language, is_global, docname) def resolve_pendings(self, app): env = app.builder.env updates = defaultdict(dict) for env_docname in self.entities.keys(): for (name, entity) in self.entities[env_docname].items(): docname = entity['docname'] node = entity['content'] for node in node.traverse(sphinx.addnodes.pending_xref): contnode = cast(nodes.TextElement, node[0].deepcopy()) newnode = None typ = node['reftype'] target = node['reftarget'] refdoc = node.get('refdoc', docname) domain = None try: if 'refdomain' in node and node['refdomain']: try: domain = env.domains[node['refdomain']] except KeyError as exc: raise NoUri(target, typ) from exc newnode = domain.resolve_xref(env, refdoc, app.builder, typ, target, node, contnode) except NoUri: newnode = contnode updates[env_docname][name] = {'docname': docname, 'content': newnode or contnode} update(self.entities, updates) def get(self, language, name, docname): name = f'{language}-{name}' if name in self.entities[docname]: return self.entities[docname][name] elif name in self.entities[GLOBALNAME]: return self.entities[GLOBALNAME][name] else: return None class EntitiesDirective(SphinxDirective): has_content = True def run(self): content = nodes.definition_list() self.state.nested_parse(self.content, self.content_offset, content) try: entities = AllEntities.install(self.env) entities.extract(content, self.env.docname) except Exception as err: raise self.error(f'Malformed directive "entities": {err}') return [] def entity_role(name, rawtext, text, lineno, inliner, options={}, content=[]): node = EntityNode() node.entity = text return ([node], []) def process_entity_nodes(app, doctree, docname): env = app.builder.env entities = AllEntities.install(env) entities.resolve_pendings(app) language = None try: language = next((l for l in LANGUAGES if l in app.tags)) except Exception: logger.warning(f'No language tag specified, not resolving entities in {docname}') for node in doctree.traverse(EntityNode): if language is None: node.replace_self(nodes.Text(_(node.entity), _(node.entity))) else: entity = entities.get(language, node.entity, docname) if entity is None: node.replace_self(nodes.Text(_(node.entity), _(node.entity))) logger.warning(f'Entity "{node.entity}" has not been defined', location=node) else: node.replace_self(entity['content']) def purge_entities(app, env, docname): entities = AllEntities.install(env) entities.purge(docname) def merge_entities(app, env, docnames, other): entities = AllEntities.install(env) other_entities = AllEntities.install(other) entities.merge(other_entities) def setup(app): app.add_node(EntityNode) app.add_node(EntitiesNode) app.add_directive('entities', EntitiesDirective) app.add_role('entity', entity_role) app.connect('doctree-resolved', process_entity_nodes) app.connect('env-merge-info', merge_entities) app.connect('env-purge-doc', purge_entities) return {'version': '0.1', 'parallel_read_safe': True, 'parallel_write_safe': True} # File: tokenizers-main/docs/source/_ext/rust_doc.py from docutils import nodes import sphinx from sphinx.locale import _ from conf import rust_version logger = sphinx.util.logging.getLogger(__name__) class RustRef: def __call__(self, name, rawtext, text, lineno, inliner, options={}, content=[]): doctype = name.split('_')[1] parts = text.split('::') if text.startswith('~'): title = parts[-1] parts[0] = parts[0][1:] else: content = text link = self.base_link() if doctype == 'struct': (l, title) = self.make_struct_link(parts, title) if doctype == 'func': (l, title) = self.make_func_link(parts, title) if doctype == 'meth': (l, title) = self.make_meth_link(parts, title) if doctype == 'trait': (l, title) = self.make_trait_link(parts, title) link += l node = nodes.reference(internal=False, refuri=link, text=title) wrapper = nodes.literal(classes=['xref']) wrapper += node return ([wrapper], []) def base_link(self): return f'https://docs.rs/tokenizers/{rust_version}' def make_struct_link(self, parts, title): link = '' struct_name = parts[-1] path = parts[:-1] for p in path: link += f'/{p}' link += f'/struct.{struct_name}.html' return (link, title) def make_func_link(self, parts, title): link = '' fn_name = parts[-1] path = parts[:-1] for p in path: link += f'/{p}' link += f'/fn.{fn_name}.html' return (link, title) def make_meth_link(self, parts, title): meth_name = parts[-1] if meth_name.endswith('()'): meth_name = meth_name[:-2] (link, title) = self.make_struct_link(parts[:-1], title) link += f'#method.{meth_name}' if not title.endswith(')'): title += '()' return (link, title) def make_trait_link(self, parts, title): link = '' trait_name = parts[-1] path = parts[:-1] for p in path: link += f'/{p}' link += f'/trait.{trait_name}.html' return (link, title) def setup(app): app.add_role('rust_struct', RustRef()) app.add_role('rust_func', RustRef()) app.add_role('rust_meth', RustRef()) app.add_role('rust_trait', RustRef()) return {'version': '0.1', 'parallel_read_safe': True, 'parallel_write_safe': True} # File: tokenizers-main/docs/source/_ext/toctree_tags.py import re from sphinx.directives.other import TocTree class TocTreeTags(TocTree): hasPat = re.compile('^\\s*:(.+):(.+)$') def filter_entries(self, entries): filtered = [] for e in entries: m = self.hasPat.match(e) if m != None: if self.env.app.tags.has(m.groups()[0]): filtered.append(m.groups()[1]) else: filtered.append(e) return filtered def run(self): self.content = self.filter_entries(self.content) return super().run() def setup(app): app.add_directive('toctree-tags', TocTreeTags) return {'version': '0.1'} # File: tokenizers-main/docs/source/conf.py import os import sys sys.path.insert(0, os.path.abspath('./_ext')) sys.path.insert(0, os.path.abspath('.')) project = 'tokenizers' copyright = '2020, huggingface' author = 'huggingface' release = '' languages = ['node', 'rust', 'python'] rust_version = 'latest' extensions = ['sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'entities', 'rust_doc', 'toctree_tags'] templates_path = ['_templates'] exclude_patterns = [] html_theme = 'sphinx_rtd_theme' html_theme_options = {'analytics_id': 'UA-83738774-2'} html_static_path = ['_static'] def setup(app): for language in languages: if not tags.has(language): exclude_patterns.append(f'tutorials/{language}/*') app.add_css_file('css/huggingface.css') app.add_css_file('css/code-snippets.css') app.add_js_file('js/custom.js') |