File size: 27,783 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/async_utils.py import functools from typing import Any, Callable, Dict, TypeVar import anyio from anyio import Semaphore from typing_extensions import ParamSpec MAX_CONCURRENT_THREADS = 1 MAX_THREADS_GUARD = Semaphore(MAX_CONCURRENT_THREADS) T = TypeVar('T') P = ParamSpec('P') async def async_handler_call(handler: Callable[P, T], body: Dict[str, Any]) -> T: async with MAX_THREADS_GUARD: return await anyio.to_thread.run_sync(functools.partial(handler, body)) # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/const.py import os from pathlib import Path from huggingface_inference_toolkit.env_utils import strtobool HF_MODEL_DIR = os.environ.get('HF_MODEL_DIR', '/opt/huggingface/model') HF_MODEL_ID = os.environ.get('HF_MODEL_ID', None) HF_TASK = os.environ.get('HF_TASK', None) HF_FRAMEWORK = os.environ.get('HF_FRAMEWORK', None) HF_REVISION = os.environ.get('HF_REVISION', None) HF_HUB_TOKEN = os.environ.get('HF_HUB_TOKEN', None) HF_TRUST_REMOTE_CODE = strtobool(os.environ.get('HF_TRUST_REMOTE_CODE', '0')) HF_DEFAULT_PIPELINE_NAME = os.environ.get('HF_DEFAULT_PIPELINE_NAME', 'handler.py') HF_MODULE_NAME = os.environ.get('HF_MODULE_NAME', f'{Path(HF_DEFAULT_PIPELINE_NAME).stem}.EndpointHandler') # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/diffusers_utils.py import importlib.util from typing import Union from transformers.utils.import_utils import is_torch_bf16_gpu_available from huggingface_inference_toolkit.logging import logger _diffusers = importlib.util.find_spec('diffusers') is not None def is_diffusers_available(): return _diffusers if is_diffusers_available(): import torch from diffusers import AutoPipelineForText2Image, DPMSolverMultistepScheduler, StableDiffusionPipeline class IEAutoPipelineForText2Image: def __init__(self, model_dir: str, device: Union[str, None]=None, **kwargs): dtype = torch.float32 if device == 'cuda': dtype = torch.bfloat16 if is_torch_bf16_gpu_available() else torch.float16 device_map = 'balanced' if device == 'cuda' else None self.pipeline = AutoPipelineForText2Image.from_pretrained(model_dir, torch_dtype=dtype, device_map=device_map, **kwargs) if isinstance(self.pipeline, StableDiffusionPipeline): try: self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(self.pipeline.scheduler.config) except Exception: pass def __call__(self, prompt, **kwargs): if 'num_images_per_prompt' in kwargs: kwargs.pop('num_images_per_prompt') logger.warning('Sending num_images_per_prompt > 1 to pipeline is not supported. Using default value 1.') out = self.pipeline(prompt, num_images_per_prompt=1, **kwargs) return out.images[0] DIFFUSERS_TASKS = {'text-to-image': IEAutoPipelineForText2Image} def get_diffusers_pipeline(task=None, model_dir=None, device=-1, **kwargs): device = 'cuda' if device == 0 else 'cpu' pipeline = DIFFUSERS_TASKS[task](model_dir=model_dir, device=device, **kwargs) return pipeline # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/env_utils.py def strtobool(val: str) -> bool: val = val.lower() if val in ('y', 'yes', 't', 'true', 'on', '1'): return True if val in ('n', 'no', 'f', 'false', 'off', '0'): return False raise ValueError(f'Invalid truth value, it should be a string but {val} was provided instead.') # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/handler.py import os from pathlib import Path from typing import Optional, Union from huggingface_inference_toolkit.const import HF_TRUST_REMOTE_CODE from huggingface_inference_toolkit.utils import check_and_register_custom_pipeline_from_directory, get_pipeline class HuggingFaceHandler: def __init__(self, model_dir: Union[str, Path], task=None, framework='pt'): self.pipeline = get_pipeline(model_dir=model_dir, task=task, framework=framework, trust_remote_code=HF_TRUST_REMOTE_CODE) def __call__(self, data): inputs = data.pop('inputs', data) parameters = data.pop('parameters', None) if parameters is not None: prediction = self.pipeline(inputs, **parameters) else: prediction = self.pipeline(inputs) return prediction class VertexAIHandler(HuggingFaceHandler): def __init__(self, model_dir: Union[str, Path], task=None, framework='pt'): super().__init__(model_dir, task, framework) def __call__(self, data): if 'instances' not in data: raise ValueError("The request body must contain a key 'instances' with a list of instances.") parameters = data.pop('parameters', None) predictions = [] for inputs in data['instances']: payload = {'inputs': inputs, 'parameters': parameters} predictions.append(super().__call__(payload)) return {'predictions': predictions} def get_inference_handler_either_custom_or_default_handler(model_dir: Path, task: Optional[str]=None): custom_pipeline = check_and_register_custom_pipeline_from_directory(model_dir) if custom_pipeline: return custom_pipeline elif os.environ.get('AIP_MODE', None) == 'PREDICTION': return VertexAIHandler(model_dir=model_dir, task=task) else: return HuggingFaceHandler(model_dir=model_dir, task=task) # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/logging.py import logging import sys def setup_logging(): for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', stream=sys.stdout) logging.getLogger('uvicorn').handlers.clear() logging.getLogger('uvicorn.access').handlers.clear() logging.getLogger('uvicorn.error').handlers.clear() logger = logging.getLogger('huggingface_inference_toolkit') return logger logger = setup_logging() # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/optimum_utils.py import importlib.util import os from huggingface_inference_toolkit.logging import logger _optimum_neuron = False if importlib.util.find_spec('optimum') is not None: if importlib.util.find_spec('optimum.neuron') is not None: _optimum_neuron = True def is_optimum_neuron_available(): return _optimum_neuron def get_input_shapes(model_dir): from transformers import AutoConfig input_shapes = {} input_shapes_available = False try: config = AutoConfig.from_pretrained(model_dir) if hasattr(config, 'neuron'): if config.neuron.get('static_batch_size', None) and config.neuron.get('static_sequence_length', None): input_shapes['batch_size'] = config.neuron['static_batch_size'] input_shapes['sequence_length'] = config.neuron['static_sequence_length'] input_shapes_available = True logger.info(f"Input shapes found in config file. Using input shapes from config with batch size {input_shapes['batch_size']} and sequence length {input_shapes['sequence_length']}") else: if os.environ.get('HF_OPTIMUM_BATCH_SIZE', None) is not None: logger.warning('HF_OPTIMUM_BATCH_SIZE environment variable is set. Environment variable will be ignored and input shapes from config file will be used.') if os.environ.get('HF_OPTIMUM_SEQUENCE_LENGTH', None) is not None: logger.warning('HF_OPTIMUM_SEQUENCE_LENGTH environment variable is set. Environment variable will be ignored and input shapes from config file will be used.') except Exception: input_shapes_available = False if input_shapes_available: return input_shapes sequence_length = os.environ.get('HF_OPTIMUM_SEQUENCE_LENGTH', None) if sequence_length is None: raise ValueError('HF_OPTIMUM_SEQUENCE_LENGTH environment variable is not set. Please set HF_OPTIMUM_SEQUENCE_LENGTH to a positive integer.') if not int(sequence_length) > 0: raise ValueError(f'HF_OPTIMUM_SEQUENCE_LENGTH must be set to a positive integer. Current value is {sequence_length}') batch_size = os.environ.get('HF_OPTIMUM_BATCH_SIZE', 1) logger.info(f'Using input shapes from environment variables with batch size {batch_size} and sequence length {sequence_length}') return {'batch_size': int(batch_size), 'sequence_length': int(sequence_length)} def get_optimum_neuron_pipeline(task, model_dir): logger.info('Getting optimum neuron pipeline.') from optimum.neuron.pipelines.transformers.base import NEURONX_SUPPORTED_TASKS, pipeline from optimum.neuron.utils import NEURON_FILE_NAME if not isinstance(model_dir, str): model_dir = str(model_dir) if task == 'sentence-embeddings': task = 'feature-extraction' if task not in NEURONX_SUPPORTED_TASKS: raise ValueError(f'Task {task} is not supported by optimum neuron and inf2. Supported tasks are: {list(NEURONX_SUPPORTED_TASKS.keys())}') export = True if NEURON_FILE_NAME in os.listdir(model_dir): export = False if export: logger.info('Model is not converted. Checking if required environment variables are set and converting model.') input_shapes = get_input_shapes(model_dir) neuron_pipe = pipeline(task, model=model_dir, export=export, input_shapes=input_shapes) return neuron_pipe # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/sentence_transformers_utils.py import importlib.util _sentence_transformers = importlib.util.find_spec('sentence_transformers') is not None def is_sentence_transformers_available(): return _sentence_transformers if is_sentence_transformers_available(): from sentence_transformers import CrossEncoder, SentenceTransformer, util class SentenceSimilarityPipeline: def __init__(self, model_dir: str, device: str=None, **kwargs): self.model = SentenceTransformer(model_dir, device=device, **kwargs) def __call__(self, inputs=None): embeddings1 = self.model.encode(inputs['source_sentence'], convert_to_tensor=True) embeddings2 = self.model.encode(inputs['sentences'], convert_to_tensor=True) similarities = util.pytorch_cos_sim(embeddings1, embeddings2).tolist()[0] return {'similarities': similarities} class SentenceEmbeddingPipeline: def __init__(self, model_dir: str, device: str=None, **kwargs): self.model = SentenceTransformer(model_dir, device=device, **kwargs) def __call__(self, inputs): embeddings = self.model.encode(inputs).tolist() return {'embeddings': embeddings} class RankingPipeline: def __init__(self, model_dir: str, device: str=None, **kwargs): self.model = CrossEncoder(model_dir, device=device, **kwargs) def __call__(self, inputs): scores = self.model.predict(inputs).tolist() return {'scores': scores} SENTENCE_TRANSFORMERS_TASKS = {'sentence-similarity': SentenceSimilarityPipeline, 'sentence-embeddings': SentenceEmbeddingPipeline, 'sentence-ranking': RankingPipeline} def get_sentence_transformers_pipeline(task=None, model_dir=None, device=-1, **kwargs): device = 'cuda' if device == 0 else 'cpu' kwargs.pop('tokenizer', None) kwargs.pop('framework', None) if task not in SENTENCE_TRANSFORMERS_TASKS: raise ValueError(f"Unknown task {task}. Available tasks are: {', '.join(SENTENCE_TRANSFORMERS_TASKS.keys())}") return SENTENCE_TRANSFORMERS_TASKS[task](model_dir=model_dir, device=device, **kwargs) # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/serialization/base.py from huggingface_inference_toolkit.serialization.audio_utils import Audioer from huggingface_inference_toolkit.serialization.image_utils import Imager from huggingface_inference_toolkit.serialization.json_utils import Jsoner content_type_mapping = {'application/json': Jsoner, 'application/json; charset=UTF-8': Jsoner, 'text/csv': None, 'text/plain': None, 'image/png': Imager, 'image/jpeg': Imager, 'image/jpg': Imager, 'image/tiff': Imager, 'image/bmp': Imager, 'image/gif': Imager, 'image/webp': Imager, 'image/x-image': Imager, 'audio/x-flac': Audioer, 'audio/flac': Audioer, 'audio/mpeg': Audioer, 'audio/x-mpeg-3': Audioer, 'audio/wave': Audioer, 'audio/wav': Audioer, 'audio/x-wav': Audioer, 'audio/ogg': Audioer, 'audio/x-audio': Audioer, 'audio/webm': Audioer, 'audio/webm;codecs=opus': Audioer, 'audio/AMR': Audioer, 'audio/amr': Audioer, 'audio/AMR-WB': Audioer, 'audio/AMR-WB+': Audioer, 'audio/m4a': Audioer, 'audio/x-m4a': Audioer} class ContentType: @staticmethod def get_deserializer(content_type): if content_type in content_type_mapping: return content_type_mapping[content_type] else: message = f'''\n Content type "{content_type}" not supported.\n Supported content types are:\n {', '.join(list(content_type_mapping.keys()))}\n ''' raise Exception(message) @staticmethod def get_serializer(accept): if accept in content_type_mapping: return content_type_mapping[accept] else: message = f'''\n Accept type "{accept}" not supported.\n Supported accept types are:\n {', '.join(list(content_type_mapping.keys()))}\n ''' raise Exception(message) # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/serialization/image_utils.py from io import BytesIO from PIL import Image class Imager: @staticmethod def deserialize(body): image = Image.open(BytesIO(body)).convert('RGB') return {'inputs': image} @staticmethod def serialize(image, accept=None): if isinstance(image, Image.Image): img_byte_arr = BytesIO() image.save(img_byte_arr, format=accept.split('/')[-1].upper()) img_byte_arr = img_byte_arr.getvalue() return img_byte_arr else: raise ValueError(f'Can only serialize PIL.Image.Image, got {type(image)}') # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/serialization/json_utils.py import base64 from io import BytesIO import orjson from PIL import Image def default(obj): if isinstance(obj, Image.Image): with BytesIO() as out: obj.save(out, format='PNG') png_string = out.getvalue() return base64.b64encode(png_string).decode('utf-8') raise TypeError class Jsoner: @staticmethod def deserialize(body): return orjson.loads(body) @staticmethod def serialize(body, accept=None): return orjson.dumps(body, option=orjson.OPT_SERIALIZE_NUMPY, default=default) # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/utils.py import importlib.util import sys from pathlib import Path from typing import Optional, Union from huggingface_hub import HfApi, login, snapshot_download from transformers import WhisperForConditionalGeneration, pipeline from transformers.file_utils import is_tf_available, is_torch_available from transformers.pipelines import Pipeline from huggingface_inference_toolkit.const import HF_DEFAULT_PIPELINE_NAME, HF_MODULE_NAME from huggingface_inference_toolkit.diffusers_utils import get_diffusers_pipeline, is_diffusers_available from huggingface_inference_toolkit.logging import logger from huggingface_inference_toolkit.optimum_utils import get_optimum_neuron_pipeline, is_optimum_neuron_available from huggingface_inference_toolkit.sentence_transformers_utils import get_sentence_transformers_pipeline, is_sentence_transformers_available if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _optimum_available = importlib.util.find_spec('optimum') is not None def is_optimum_available(): return False framework2weight = {'pytorch': 'pytorch*', 'tensorflow': 'tf*', 'tf': 'tf*', 'pt': 'pytorch*', 'flax': 'flax*', 'rust': 'rust*', 'onnx': '*onnx*', 'safetensors': '*safetensors', 'coreml': '*mlmodel', 'tflite': '*tflite', 'savedmodel': '*tar.gz', 'openvino': '*openvino*', 'ckpt': '*ckpt'} def create_artifact_filter(framework): ignore_regex_list = list(set(framework2weight.values())) pattern = framework2weight.get(framework, None) if pattern in ignore_regex_list: ignore_regex_list.remove(pattern) return ignore_regex_list else: return [] def _is_gpu_available(): if is_tf_available(): return True if len(tf.config.list_physical_devices('GPU')) > 0 else False elif is_torch_available(): return torch.cuda.is_available() else: raise RuntimeError('At least one of TensorFlow 2.0 or PyTorch should be installed. To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ To install PyTorch, read the instructions at https://pytorch.org/.') def _get_framework(): if is_torch_available(): return 'pytorch' elif is_tf_available(): return 'tensorflow' else: raise RuntimeError('At least one of TensorFlow 2.0 or PyTorch should be installed. To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ To install PyTorch, read the instructions at https://pytorch.org/.') def _load_repository_from_hf(repository_id: Optional[str]=None, target_dir: Optional[Union[str, Path]]=None, framework: Optional[str]=None, revision: Optional[str]=None, hf_hub_token: Optional[str]=None): if hf_hub_token is not None: login(token=hf_hub_token) if framework is None: framework = _get_framework() if isinstance(target_dir, str): target_dir = Path(target_dir) if not target_dir.exists(): target_dir.mkdir(parents=True) if framework == 'pytorch': files = HfApi().model_info(repository_id).siblings if any((f.rfilename.endswith('safetensors') for f in files)): framework = 'safetensors' ignore_regex = create_artifact_filter(framework) logger.info(f"Ignore regex pattern for files, which are not downloaded: {', '.join(ignore_regex)}") snapshot_download(repo_id=repository_id, revision=revision, local_dir=str(target_dir), local_dir_use_symlinks=False, ignore_patterns=ignore_regex) return target_dir def check_and_register_custom_pipeline_from_directory(model_dir): custom_module = Path(model_dir).joinpath(HF_DEFAULT_PIPELINE_NAME) legacy_module = Path(model_dir).joinpath('pipeline.py') if custom_module.is_file(): logger.info(f'Found custom pipeline at {custom_module}') spec = importlib.util.spec_from_file_location(HF_MODULE_NAME, custom_module) if spec: sys.path.insert(0, model_dir) handler = importlib.util.module_from_spec(spec) sys.modules[HF_MODULE_NAME] = handler spec.loader.exec_module(handler) custom_pipeline = handler.EndpointHandler(model_dir) elif legacy_module.is_file(): logger.warning('You are using a legacy custom pipeline.\n Please update to the new format.\n See documentation for more information.') spec = importlib.util.spec_from_file_location('pipeline.PreTrainedPipeline', legacy_module) if spec: sys.path.insert(0, model_dir) pipeline = importlib.util.module_from_spec(spec) sys.modules['pipeline.PreTrainedPipeline'] = pipeline spec.loader.exec_module(pipeline) custom_pipeline = pipeline.PreTrainedPipeline(model_dir) else: logger.info(f'No custom pipeline found at {custom_module}') custom_pipeline = None return custom_pipeline def get_device(): gpu = _is_gpu_available() if gpu: return 0 else: return -1 def get_pipeline(task: str, model_dir: Path, **kwargs) -> Pipeline: device = get_device() if is_optimum_neuron_available(): logger.info('Using device Neuron') else: logger.info(f"Using device {('GPU' if device == 0 else 'CPU')}") if task is None: raise EnvironmentError('The task for this model is not set: Please set one: https://huggingface.co/docs#how-is-a-models-type-of-inference-api-and-widget-determined') if task in {'automatic-speech-recognition', 'image-segmentation', 'image-classification', 'audio-classification', 'object-detection', 'zero-shot-image-classification'}: kwargs['feature_extractor'] = model_dir elif task in {'image-to-text', 'text-to-image'}: pass elif task == 'conversational': task = 'text-generation' else: kwargs['tokenizer'] = model_dir if is_optimum_neuron_available(): hf_pipeline = get_optimum_neuron_pipeline(task=task, model_dir=model_dir) elif is_sentence_transformers_available() and task in ['sentence-similarity', 'sentence-embeddings', 'sentence-ranking']: hf_pipeline = get_sentence_transformers_pipeline(task=task, model_dir=model_dir, device=device, **kwargs) elif is_diffusers_available() and task == 'text-to-image': hf_pipeline = get_diffusers_pipeline(task=task, model_dir=model_dir, device=device, **kwargs) else: hf_pipeline = pipeline(task=task, model=model_dir, device=device, **kwargs) if task == 'automatic-speech-recognition' and isinstance(hf_pipeline.model, WhisperForConditionalGeneration): hf_pipeline._preprocess_params['chunk_length_s'] = 30 hf_pipeline.model.config.forced_decoder_ids = hf_pipeline.tokenizer.get_decoder_prompt_ids(language='english', task='transcribe') return hf_pipeline def convert_params_to_int_or_bool(params): for (k, v) in params.items(): if v.isnumeric(): params[k] = int(v) if v == 'false': params[k] = False if v == 'true': params[k] = True return params # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/vertex_ai_utils.py import re from pathlib import Path from typing import Union from huggingface_inference_toolkit.logging import logger GCS_URI_PREFIX = 'gs://' def _load_repository_from_gcs(artifact_uri: str, target_dir: Union[str, Path]='/tmp') -> str: from google.cloud import storage logger.info(f'Loading model artifacts from {artifact_uri} to {target_dir}') if isinstance(target_dir, str): target_dir = Path(target_dir) if artifact_uri.startswith(GCS_URI_PREFIX): matches = re.match(f'{GCS_URI_PREFIX}(.*?)/(.*)', artifact_uri) (bucket_name, prefix) = matches.groups() gcs_client = storage.Client() blobs = gcs_client.list_blobs(bucket_name, prefix=prefix) for blob in blobs: name_without_prefix = blob.name[len(prefix):] name_without_prefix = name_without_prefix[1:] if name_without_prefix.startswith('/') else name_without_prefix file_split = name_without_prefix.split('/') directory = target_dir / Path(*file_split[0:-1]) directory.mkdir(parents=True, exist_ok=True) if name_without_prefix and (not name_without_prefix.endswith('/')): blob.download_to_filename(target_dir / name_without_prefix) return str(target_dir.absolute()) # File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/webservice_starlette.py import os from pathlib import Path from time import perf_counter import orjson from starlette.applications import Starlette from starlette.responses import PlainTextResponse, Response from starlette.routing import Route from huggingface_inference_toolkit.async_utils import async_handler_call from huggingface_inference_toolkit.const import HF_FRAMEWORK, HF_HUB_TOKEN, HF_MODEL_DIR, HF_MODEL_ID, HF_REVISION, HF_TASK from huggingface_inference_toolkit.handler import get_inference_handler_either_custom_or_default_handler from huggingface_inference_toolkit.logging import logger from huggingface_inference_toolkit.serialization.base import ContentType from huggingface_inference_toolkit.serialization.json_utils import Jsoner from huggingface_inference_toolkit.utils import _load_repository_from_hf, convert_params_to_int_or_bool from huggingface_inference_toolkit.vertex_ai_utils import _load_repository_from_gcs async def prepare_model_artifacts(): global inference_handler if len(list(Path(HF_MODEL_DIR).glob('**/*'))) <= 0: if HF_MODEL_ID is not None: _load_repository_from_hf(repository_id=HF_MODEL_ID, target_dir=HF_MODEL_DIR, framework=HF_FRAMEWORK, revision=HF_REVISION, hf_hub_token=HF_HUB_TOKEN) elif len(os.environ.get('AIP_STORAGE_URI', '')) > 0: _load_repository_from_gcs(os.environ['AIP_STORAGE_URI'], target_dir=HF_MODEL_DIR) else: raise ValueError(f"Can't initialize model.\n Please set env HF_MODEL_DIR or provider a HF_MODEL_ID.\n Provided values are:\n HF_MODEL_DIR: {HF_MODEL_DIR} and HF_MODEL_ID:{HF_MODEL_ID}") logger.info(f'Initializing model from directory:{HF_MODEL_DIR}') inference_handler = get_inference_handler_either_custom_or_default_handler(HF_MODEL_DIR, task=HF_TASK) logger.info('Model initialized successfully') async def health(request): return PlainTextResponse('Ok') async def predict(request): try: content_type = request.headers.get('content-Type', None) deserialized_body = ContentType.get_deserializer(content_type).deserialize(await request.body()) if 'inputs' not in deserialized_body and 'instances' not in deserialized_body: raise ValueError(f'Body needs to provide a inputs key, received: {orjson.dumps(deserialized_body)}') if request.query_params and 'parameters' not in deserialized_body: deserialized_body['parameters'] = convert_params_to_int_or_bool(dict(request.query_params)) start_time = perf_counter() pred = await async_handler_call(inference_handler, deserialized_body) logger.info(f'POST {request.url.path} | Duration: {(perf_counter() - start_time) * 1000:.2f} ms') accept = request.headers.get('accept', None) if accept is None or accept == '*/*': accept = 'application/json' serialized_response_body = ContentType.get_serializer(accept).serialize(pred, accept) return Response(serialized_response_body, media_type=accept) except Exception as e: logger.error(e) return Response(Jsoner.serialize({'error': str(e)}), status_code=400, media_type='application/json') if os.getenv('AIP_MODE', None) == 'PREDICTION': logger.info('Running in Vertex AI environment') _predict_route = os.getenv('AIP_PREDICT_ROUTE', None) _health_route = os.getenv('AIP_HEALTH_ROUTE', None) if _predict_route is None or _health_route is None: raise ValueError('AIP_PREDICT_ROUTE and AIP_HEALTH_ROUTE need to be set in Vertex AI environment') app = Starlette(debug=False, routes=[Route(_health_route, health, methods=['GET']), Route(_predict_route, predict, methods=['POST'])], on_startup=[prepare_model_artifacts]) else: app = Starlette(debug=False, routes=[Route('/', health, methods=['GET']), Route('/health', health, methods=['GET']), Route('/', predict, methods=['POST']), Route('/predict', predict, methods=['POST'])], on_startup=[prepare_model_artifacts]) |