File size: 27,783 Bytes
b1d4de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/async_utils.py
import functools
from typing import Any, Callable, Dict, TypeVar
import anyio
from anyio import Semaphore
from typing_extensions import ParamSpec
MAX_CONCURRENT_THREADS = 1
MAX_THREADS_GUARD = Semaphore(MAX_CONCURRENT_THREADS)
T = TypeVar('T')
P = ParamSpec('P')

async def async_handler_call(handler: Callable[P, T], body: Dict[str, Any]) -> T:
    async with MAX_THREADS_GUARD:
        return await anyio.to_thread.run_sync(functools.partial(handler, body))

# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/const.py
import os
from pathlib import Path
from huggingface_inference_toolkit.env_utils import strtobool
HF_MODEL_DIR = os.environ.get('HF_MODEL_DIR', '/opt/huggingface/model')
HF_MODEL_ID = os.environ.get('HF_MODEL_ID', None)
HF_TASK = os.environ.get('HF_TASK', None)
HF_FRAMEWORK = os.environ.get('HF_FRAMEWORK', None)
HF_REVISION = os.environ.get('HF_REVISION', None)
HF_HUB_TOKEN = os.environ.get('HF_HUB_TOKEN', None)
HF_TRUST_REMOTE_CODE = strtobool(os.environ.get('HF_TRUST_REMOTE_CODE', '0'))
HF_DEFAULT_PIPELINE_NAME = os.environ.get('HF_DEFAULT_PIPELINE_NAME', 'handler.py')
HF_MODULE_NAME = os.environ.get('HF_MODULE_NAME', f'{Path(HF_DEFAULT_PIPELINE_NAME).stem}.EndpointHandler')

# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/diffusers_utils.py
import importlib.util
from typing import Union
from transformers.utils.import_utils import is_torch_bf16_gpu_available
from huggingface_inference_toolkit.logging import logger
_diffusers = importlib.util.find_spec('diffusers') is not None

def is_diffusers_available():
    return _diffusers
if is_diffusers_available():
    import torch
    from diffusers import AutoPipelineForText2Image, DPMSolverMultistepScheduler, StableDiffusionPipeline

class IEAutoPipelineForText2Image:

    def __init__(self, model_dir: str, device: Union[str, None]=None, **kwargs):
        dtype = torch.float32
        if device == 'cuda':
            dtype = torch.bfloat16 if is_torch_bf16_gpu_available() else torch.float16
        device_map = 'balanced' if device == 'cuda' else None
        self.pipeline = AutoPipelineForText2Image.from_pretrained(model_dir, torch_dtype=dtype, device_map=device_map, **kwargs)
        if isinstance(self.pipeline, StableDiffusionPipeline):
            try:
                self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(self.pipeline.scheduler.config)
            except Exception:
                pass

    def __call__(self, prompt, **kwargs):
        if 'num_images_per_prompt' in kwargs:
            kwargs.pop('num_images_per_prompt')
            logger.warning('Sending num_images_per_prompt > 1 to pipeline is not supported. Using default value 1.')
        out = self.pipeline(prompt, num_images_per_prompt=1, **kwargs)
        return out.images[0]
DIFFUSERS_TASKS = {'text-to-image': IEAutoPipelineForText2Image}

def get_diffusers_pipeline(task=None, model_dir=None, device=-1, **kwargs):
    device = 'cuda' if device == 0 else 'cpu'
    pipeline = DIFFUSERS_TASKS[task](model_dir=model_dir, device=device, **kwargs)
    return pipeline

# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/env_utils.py
def strtobool(val: str) -> bool:
    val = val.lower()
    if val in ('y', 'yes', 't', 'true', 'on', '1'):
        return True
    if val in ('n', 'no', 'f', 'false', 'off', '0'):
        return False
    raise ValueError(f'Invalid truth value, it should be a string but {val} was provided instead.')

# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/handler.py
import os
from pathlib import Path
from typing import Optional, Union
from huggingface_inference_toolkit.const import HF_TRUST_REMOTE_CODE
from huggingface_inference_toolkit.utils import check_and_register_custom_pipeline_from_directory, get_pipeline

class HuggingFaceHandler:

    def __init__(self, model_dir: Union[str, Path], task=None, framework='pt'):
        self.pipeline = get_pipeline(model_dir=model_dir, task=task, framework=framework, trust_remote_code=HF_TRUST_REMOTE_CODE)

    def __call__(self, data):
        inputs = data.pop('inputs', data)
        parameters = data.pop('parameters', None)
        if parameters is not None:
            prediction = self.pipeline(inputs, **parameters)
        else:
            prediction = self.pipeline(inputs)
        return prediction

class VertexAIHandler(HuggingFaceHandler):

    def __init__(self, model_dir: Union[str, Path], task=None, framework='pt'):
        super().__init__(model_dir, task, framework)

    def __call__(self, data):
        if 'instances' not in data:
            raise ValueError("The request body must contain a key 'instances' with a list of instances.")
        parameters = data.pop('parameters', None)
        predictions = []
        for inputs in data['instances']:
            payload = {'inputs': inputs, 'parameters': parameters}
            predictions.append(super().__call__(payload))
        return {'predictions': predictions}

def get_inference_handler_either_custom_or_default_handler(model_dir: Path, task: Optional[str]=None):
    custom_pipeline = check_and_register_custom_pipeline_from_directory(model_dir)
    if custom_pipeline:
        return custom_pipeline
    elif os.environ.get('AIP_MODE', None) == 'PREDICTION':
        return VertexAIHandler(model_dir=model_dir, task=task)
    else:
        return HuggingFaceHandler(model_dir=model_dir, task=task)

# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/logging.py
import logging
import sys

def setup_logging():
    for handler in logging.root.handlers[:]:
        logging.root.removeHandler(handler)
    logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', stream=sys.stdout)
    logging.getLogger('uvicorn').handlers.clear()
    logging.getLogger('uvicorn.access').handlers.clear()
    logging.getLogger('uvicorn.error').handlers.clear()
    logger = logging.getLogger('huggingface_inference_toolkit')
    return logger
logger = setup_logging()

# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/optimum_utils.py
import importlib.util
import os
from huggingface_inference_toolkit.logging import logger
_optimum_neuron = False
if importlib.util.find_spec('optimum') is not None:
    if importlib.util.find_spec('optimum.neuron') is not None:
        _optimum_neuron = True

def is_optimum_neuron_available():
    return _optimum_neuron

def get_input_shapes(model_dir):
    from transformers import AutoConfig
    input_shapes = {}
    input_shapes_available = False
    try:
        config = AutoConfig.from_pretrained(model_dir)
        if hasattr(config, 'neuron'):
            if config.neuron.get('static_batch_size', None) and config.neuron.get('static_sequence_length', None):
                input_shapes['batch_size'] = config.neuron['static_batch_size']
                input_shapes['sequence_length'] = config.neuron['static_sequence_length']
                input_shapes_available = True
                logger.info(f"Input shapes found in config file. Using input shapes from config with batch size {input_shapes['batch_size']} and sequence length {input_shapes['sequence_length']}")
            else:
                if os.environ.get('HF_OPTIMUM_BATCH_SIZE', None) is not None:
                    logger.warning('HF_OPTIMUM_BATCH_SIZE environment variable is set. Environment variable will be ignored and input shapes from config file will be used.')
                if os.environ.get('HF_OPTIMUM_SEQUENCE_LENGTH', None) is not None:
                    logger.warning('HF_OPTIMUM_SEQUENCE_LENGTH environment variable is set. Environment variable will be ignored and input shapes from config file will be used.')
    except Exception:
        input_shapes_available = False
    if input_shapes_available:
        return input_shapes
    sequence_length = os.environ.get('HF_OPTIMUM_SEQUENCE_LENGTH', None)
    if sequence_length is None:
        raise ValueError('HF_OPTIMUM_SEQUENCE_LENGTH environment variable is not set. Please set HF_OPTIMUM_SEQUENCE_LENGTH to a positive integer.')
    if not int(sequence_length) > 0:
        raise ValueError(f'HF_OPTIMUM_SEQUENCE_LENGTH must be set to a positive integer. Current value is {sequence_length}')
    batch_size = os.environ.get('HF_OPTIMUM_BATCH_SIZE', 1)
    logger.info(f'Using input shapes from environment variables with batch size {batch_size} and sequence length {sequence_length}')
    return {'batch_size': int(batch_size), 'sequence_length': int(sequence_length)}

def get_optimum_neuron_pipeline(task, model_dir):
    logger.info('Getting optimum neuron pipeline.')
    from optimum.neuron.pipelines.transformers.base import NEURONX_SUPPORTED_TASKS, pipeline
    from optimum.neuron.utils import NEURON_FILE_NAME
    if not isinstance(model_dir, str):
        model_dir = str(model_dir)
    if task == 'sentence-embeddings':
        task = 'feature-extraction'
    if task not in NEURONX_SUPPORTED_TASKS:
        raise ValueError(f'Task {task} is not supported by optimum neuron and inf2. Supported tasks are: {list(NEURONX_SUPPORTED_TASKS.keys())}')
    export = True
    if NEURON_FILE_NAME in os.listdir(model_dir):
        export = False
    if export:
        logger.info('Model is not converted. Checking if required environment variables are set and converting model.')
    input_shapes = get_input_shapes(model_dir)
    neuron_pipe = pipeline(task, model=model_dir, export=export, input_shapes=input_shapes)
    return neuron_pipe

# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/sentence_transformers_utils.py
import importlib.util
_sentence_transformers = importlib.util.find_spec('sentence_transformers') is not None

def is_sentence_transformers_available():
    return _sentence_transformers
if is_sentence_transformers_available():
    from sentence_transformers import CrossEncoder, SentenceTransformer, util

class SentenceSimilarityPipeline:

    def __init__(self, model_dir: str, device: str=None, **kwargs):
        self.model = SentenceTransformer(model_dir, device=device, **kwargs)

    def __call__(self, inputs=None):
        embeddings1 = self.model.encode(inputs['source_sentence'], convert_to_tensor=True)
        embeddings2 = self.model.encode(inputs['sentences'], convert_to_tensor=True)
        similarities = util.pytorch_cos_sim(embeddings1, embeddings2).tolist()[0]
        return {'similarities': similarities}

class SentenceEmbeddingPipeline:

    def __init__(self, model_dir: str, device: str=None, **kwargs):
        self.model = SentenceTransformer(model_dir, device=device, **kwargs)

    def __call__(self, inputs):
        embeddings = self.model.encode(inputs).tolist()
        return {'embeddings': embeddings}

class RankingPipeline:

    def __init__(self, model_dir: str, device: str=None, **kwargs):
        self.model = CrossEncoder(model_dir, device=device, **kwargs)

    def __call__(self, inputs):
        scores = self.model.predict(inputs).tolist()
        return {'scores': scores}
SENTENCE_TRANSFORMERS_TASKS = {'sentence-similarity': SentenceSimilarityPipeline, 'sentence-embeddings': SentenceEmbeddingPipeline, 'sentence-ranking': RankingPipeline}

def get_sentence_transformers_pipeline(task=None, model_dir=None, device=-1, **kwargs):
    device = 'cuda' if device == 0 else 'cpu'
    kwargs.pop('tokenizer', None)
    kwargs.pop('framework', None)
    if task not in SENTENCE_TRANSFORMERS_TASKS:
        raise ValueError(f"Unknown task {task}. Available tasks are: {', '.join(SENTENCE_TRANSFORMERS_TASKS.keys())}")
    return SENTENCE_TRANSFORMERS_TASKS[task](model_dir=model_dir, device=device, **kwargs)

# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/serialization/base.py
from huggingface_inference_toolkit.serialization.audio_utils import Audioer
from huggingface_inference_toolkit.serialization.image_utils import Imager
from huggingface_inference_toolkit.serialization.json_utils import Jsoner
content_type_mapping = {'application/json': Jsoner, 'application/json; charset=UTF-8': Jsoner, 'text/csv': None, 'text/plain': None, 'image/png': Imager, 'image/jpeg': Imager, 'image/jpg': Imager, 'image/tiff': Imager, 'image/bmp': Imager, 'image/gif': Imager, 'image/webp': Imager, 'image/x-image': Imager, 'audio/x-flac': Audioer, 'audio/flac': Audioer, 'audio/mpeg': Audioer, 'audio/x-mpeg-3': Audioer, 'audio/wave': Audioer, 'audio/wav': Audioer, 'audio/x-wav': Audioer, 'audio/ogg': Audioer, 'audio/x-audio': Audioer, 'audio/webm': Audioer, 'audio/webm;codecs=opus': Audioer, 'audio/AMR': Audioer, 'audio/amr': Audioer, 'audio/AMR-WB': Audioer, 'audio/AMR-WB+': Audioer, 'audio/m4a': Audioer, 'audio/x-m4a': Audioer}

class ContentType:

    @staticmethod
    def get_deserializer(content_type):
        if content_type in content_type_mapping:
            return content_type_mapping[content_type]
        else:
            message = f'''\n                Content type "{content_type}" not supported.\n                Supported content types are:\n                {', '.join(list(content_type_mapping.keys()))}\n            '''
            raise Exception(message)

    @staticmethod
    def get_serializer(accept):
        if accept in content_type_mapping:
            return content_type_mapping[accept]
        else:
            message = f'''\n                Accept type "{accept}" not supported.\n                Supported accept types are:\n                {', '.join(list(content_type_mapping.keys()))}\n            '''
            raise Exception(message)

# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/serialization/image_utils.py
from io import BytesIO
from PIL import Image

class Imager:

    @staticmethod
    def deserialize(body):
        image = Image.open(BytesIO(body)).convert('RGB')
        return {'inputs': image}

    @staticmethod
    def serialize(image, accept=None):
        if isinstance(image, Image.Image):
            img_byte_arr = BytesIO()
            image.save(img_byte_arr, format=accept.split('/')[-1].upper())
            img_byte_arr = img_byte_arr.getvalue()
            return img_byte_arr
        else:
            raise ValueError(f'Can only serialize PIL.Image.Image, got {type(image)}')

# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/serialization/json_utils.py
import base64
from io import BytesIO
import orjson
from PIL import Image

def default(obj):
    if isinstance(obj, Image.Image):
        with BytesIO() as out:
            obj.save(out, format='PNG')
            png_string = out.getvalue()
            return base64.b64encode(png_string).decode('utf-8')
    raise TypeError

class Jsoner:

    @staticmethod
    def deserialize(body):
        return orjson.loads(body)

    @staticmethod
    def serialize(body, accept=None):
        return orjson.dumps(body, option=orjson.OPT_SERIALIZE_NUMPY, default=default)

# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/utils.py
import importlib.util
import sys
from pathlib import Path
from typing import Optional, Union
from huggingface_hub import HfApi, login, snapshot_download
from transformers import WhisperForConditionalGeneration, pipeline
from transformers.file_utils import is_tf_available, is_torch_available
from transformers.pipelines import Pipeline
from huggingface_inference_toolkit.const import HF_DEFAULT_PIPELINE_NAME, HF_MODULE_NAME
from huggingface_inference_toolkit.diffusers_utils import get_diffusers_pipeline, is_diffusers_available
from huggingface_inference_toolkit.logging import logger
from huggingface_inference_toolkit.optimum_utils import get_optimum_neuron_pipeline, is_optimum_neuron_available
from huggingface_inference_toolkit.sentence_transformers_utils import get_sentence_transformers_pipeline, is_sentence_transformers_available
if is_tf_available():
    import tensorflow as tf
if is_torch_available():
    import torch
_optimum_available = importlib.util.find_spec('optimum') is not None

def is_optimum_available():
    return False
framework2weight = {'pytorch': 'pytorch*', 'tensorflow': 'tf*', 'tf': 'tf*', 'pt': 'pytorch*', 'flax': 'flax*', 'rust': 'rust*', 'onnx': '*onnx*', 'safetensors': '*safetensors', 'coreml': '*mlmodel', 'tflite': '*tflite', 'savedmodel': '*tar.gz', 'openvino': '*openvino*', 'ckpt': '*ckpt'}

def create_artifact_filter(framework):
    ignore_regex_list = list(set(framework2weight.values()))
    pattern = framework2weight.get(framework, None)
    if pattern in ignore_regex_list:
        ignore_regex_list.remove(pattern)
        return ignore_regex_list
    else:
        return []

def _is_gpu_available():
    if is_tf_available():
        return True if len(tf.config.list_physical_devices('GPU')) > 0 else False
    elif is_torch_available():
        return torch.cuda.is_available()
    else:
        raise RuntimeError('At least one of TensorFlow 2.0 or PyTorch should be installed. To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ To install PyTorch, read the instructions at https://pytorch.org/.')

def _get_framework():
    if is_torch_available():
        return 'pytorch'
    elif is_tf_available():
        return 'tensorflow'
    else:
        raise RuntimeError('At least one of TensorFlow 2.0 or PyTorch should be installed. To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ To install PyTorch, read the instructions at https://pytorch.org/.')

def _load_repository_from_hf(repository_id: Optional[str]=None, target_dir: Optional[Union[str, Path]]=None, framework: Optional[str]=None, revision: Optional[str]=None, hf_hub_token: Optional[str]=None):
    if hf_hub_token is not None:
        login(token=hf_hub_token)
    if framework is None:
        framework = _get_framework()
    if isinstance(target_dir, str):
        target_dir = Path(target_dir)
    if not target_dir.exists():
        target_dir.mkdir(parents=True)
    if framework == 'pytorch':
        files = HfApi().model_info(repository_id).siblings
        if any((f.rfilename.endswith('safetensors') for f in files)):
            framework = 'safetensors'
    ignore_regex = create_artifact_filter(framework)
    logger.info(f"Ignore regex pattern for files, which are not downloaded: {', '.join(ignore_regex)}")
    snapshot_download(repo_id=repository_id, revision=revision, local_dir=str(target_dir), local_dir_use_symlinks=False, ignore_patterns=ignore_regex)
    return target_dir

def check_and_register_custom_pipeline_from_directory(model_dir):
    custom_module = Path(model_dir).joinpath(HF_DEFAULT_PIPELINE_NAME)
    legacy_module = Path(model_dir).joinpath('pipeline.py')
    if custom_module.is_file():
        logger.info(f'Found custom pipeline at {custom_module}')
        spec = importlib.util.spec_from_file_location(HF_MODULE_NAME, custom_module)
        if spec:
            sys.path.insert(0, model_dir)
            handler = importlib.util.module_from_spec(spec)
            sys.modules[HF_MODULE_NAME] = handler
            spec.loader.exec_module(handler)
            custom_pipeline = handler.EndpointHandler(model_dir)
    elif legacy_module.is_file():
        logger.warning('You are using a legacy custom pipeline.\n            Please update to the new format.\n            See documentation for more information.')
        spec = importlib.util.spec_from_file_location('pipeline.PreTrainedPipeline', legacy_module)
        if spec:
            sys.path.insert(0, model_dir)
            pipeline = importlib.util.module_from_spec(spec)
            sys.modules['pipeline.PreTrainedPipeline'] = pipeline
            spec.loader.exec_module(pipeline)
            custom_pipeline = pipeline.PreTrainedPipeline(model_dir)
    else:
        logger.info(f'No custom pipeline found at {custom_module}')
        custom_pipeline = None
    return custom_pipeline

def get_device():
    gpu = _is_gpu_available()
    if gpu:
        return 0
    else:
        return -1

def get_pipeline(task: str, model_dir: Path, **kwargs) -> Pipeline:
    device = get_device()
    if is_optimum_neuron_available():
        logger.info('Using device Neuron')
    else:
        logger.info(f"Using device {('GPU' if device == 0 else 'CPU')}")
    if task is None:
        raise EnvironmentError('The task for this model is not set: Please set one: https://huggingface.co/docs#how-is-a-models-type-of-inference-api-and-widget-determined')
    if task in {'automatic-speech-recognition', 'image-segmentation', 'image-classification', 'audio-classification', 'object-detection', 'zero-shot-image-classification'}:
        kwargs['feature_extractor'] = model_dir
    elif task in {'image-to-text', 'text-to-image'}:
        pass
    elif task == 'conversational':
        task = 'text-generation'
    else:
        kwargs['tokenizer'] = model_dir
    if is_optimum_neuron_available():
        hf_pipeline = get_optimum_neuron_pipeline(task=task, model_dir=model_dir)
    elif is_sentence_transformers_available() and task in ['sentence-similarity', 'sentence-embeddings', 'sentence-ranking']:
        hf_pipeline = get_sentence_transformers_pipeline(task=task, model_dir=model_dir, device=device, **kwargs)
    elif is_diffusers_available() and task == 'text-to-image':
        hf_pipeline = get_diffusers_pipeline(task=task, model_dir=model_dir, device=device, **kwargs)
    else:
        hf_pipeline = pipeline(task=task, model=model_dir, device=device, **kwargs)
    if task == 'automatic-speech-recognition' and isinstance(hf_pipeline.model, WhisperForConditionalGeneration):
        hf_pipeline._preprocess_params['chunk_length_s'] = 30
        hf_pipeline.model.config.forced_decoder_ids = hf_pipeline.tokenizer.get_decoder_prompt_ids(language='english', task='transcribe')
    return hf_pipeline

def convert_params_to_int_or_bool(params):
    for (k, v) in params.items():
        if v.isnumeric():
            params[k] = int(v)
        if v == 'false':
            params[k] = False
        if v == 'true':
            params[k] = True
    return params

# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/vertex_ai_utils.py
import re
from pathlib import Path
from typing import Union
from huggingface_inference_toolkit.logging import logger
GCS_URI_PREFIX = 'gs://'

def _load_repository_from_gcs(artifact_uri: str, target_dir: Union[str, Path]='/tmp') -> str:
    from google.cloud import storage
    logger.info(f'Loading model artifacts from {artifact_uri} to {target_dir}')
    if isinstance(target_dir, str):
        target_dir = Path(target_dir)
    if artifact_uri.startswith(GCS_URI_PREFIX):
        matches = re.match(f'{GCS_URI_PREFIX}(.*?)/(.*)', artifact_uri)
        (bucket_name, prefix) = matches.groups()
        gcs_client = storage.Client()
        blobs = gcs_client.list_blobs(bucket_name, prefix=prefix)
        for blob in blobs:
            name_without_prefix = blob.name[len(prefix):]
            name_without_prefix = name_without_prefix[1:] if name_without_prefix.startswith('/') else name_without_prefix
            file_split = name_without_prefix.split('/')
            directory = target_dir / Path(*file_split[0:-1])
            directory.mkdir(parents=True, exist_ok=True)
            if name_without_prefix and (not name_without_prefix.endswith('/')):
                blob.download_to_filename(target_dir / name_without_prefix)
    return str(target_dir.absolute())

# File: huggingface-inference-toolkit-main/src/huggingface_inference_toolkit/webservice_starlette.py
import os
from pathlib import Path
from time import perf_counter
import orjson
from starlette.applications import Starlette
from starlette.responses import PlainTextResponse, Response
from starlette.routing import Route
from huggingface_inference_toolkit.async_utils import async_handler_call
from huggingface_inference_toolkit.const import HF_FRAMEWORK, HF_HUB_TOKEN, HF_MODEL_DIR, HF_MODEL_ID, HF_REVISION, HF_TASK
from huggingface_inference_toolkit.handler import get_inference_handler_either_custom_or_default_handler
from huggingface_inference_toolkit.logging import logger
from huggingface_inference_toolkit.serialization.base import ContentType
from huggingface_inference_toolkit.serialization.json_utils import Jsoner
from huggingface_inference_toolkit.utils import _load_repository_from_hf, convert_params_to_int_or_bool
from huggingface_inference_toolkit.vertex_ai_utils import _load_repository_from_gcs

async def prepare_model_artifacts():
    global inference_handler
    if len(list(Path(HF_MODEL_DIR).glob('**/*'))) <= 0:
        if HF_MODEL_ID is not None:
            _load_repository_from_hf(repository_id=HF_MODEL_ID, target_dir=HF_MODEL_DIR, framework=HF_FRAMEWORK, revision=HF_REVISION, hf_hub_token=HF_HUB_TOKEN)
        elif len(os.environ.get('AIP_STORAGE_URI', '')) > 0:
            _load_repository_from_gcs(os.environ['AIP_STORAGE_URI'], target_dir=HF_MODEL_DIR)
        else:
            raise ValueError(f"Can't initialize model.\n                Please set env HF_MODEL_DIR or provider a HF_MODEL_ID.\n                Provided values are:\n                HF_MODEL_DIR: {HF_MODEL_DIR} and HF_MODEL_ID:{HF_MODEL_ID}")
    logger.info(f'Initializing model from directory:{HF_MODEL_DIR}')
    inference_handler = get_inference_handler_either_custom_or_default_handler(HF_MODEL_DIR, task=HF_TASK)
    logger.info('Model initialized successfully')

async def health(request):
    return PlainTextResponse('Ok')

async def predict(request):
    try:
        content_type = request.headers.get('content-Type', None)
        deserialized_body = ContentType.get_deserializer(content_type).deserialize(await request.body())
        if 'inputs' not in deserialized_body and 'instances' not in deserialized_body:
            raise ValueError(f'Body needs to provide a inputs key, received: {orjson.dumps(deserialized_body)}')
        if request.query_params and 'parameters' not in deserialized_body:
            deserialized_body['parameters'] = convert_params_to_int_or_bool(dict(request.query_params))
        start_time = perf_counter()
        pred = await async_handler_call(inference_handler, deserialized_body)
        logger.info(f'POST {request.url.path} | Duration: {(perf_counter() - start_time) * 1000:.2f} ms')
        accept = request.headers.get('accept', None)
        if accept is None or accept == '*/*':
            accept = 'application/json'
        serialized_response_body = ContentType.get_serializer(accept).serialize(pred, accept)
        return Response(serialized_response_body, media_type=accept)
    except Exception as e:
        logger.error(e)
        return Response(Jsoner.serialize({'error': str(e)}), status_code=400, media_type='application/json')
if os.getenv('AIP_MODE', None) == 'PREDICTION':
    logger.info('Running in Vertex AI environment')
    _predict_route = os.getenv('AIP_PREDICT_ROUTE', None)
    _health_route = os.getenv('AIP_HEALTH_ROUTE', None)
    if _predict_route is None or _health_route is None:
        raise ValueError('AIP_PREDICT_ROUTE and AIP_HEALTH_ROUTE need to be set in Vertex AI environment')
    app = Starlette(debug=False, routes=[Route(_health_route, health, methods=['GET']), Route(_predict_route, predict, methods=['POST'])], on_startup=[prepare_model_artifacts])
else:
    app = Starlette(debug=False, routes=[Route('/', health, methods=['GET']), Route('/health', health, methods=['GET']), Route('/', predict, methods=['POST']), Route('/predict', predict, methods=['POST'])], on_startup=[prepare_model_artifacts])